The Impact of Data Control and Delayed Discounting on the Public's Willingness to Share Different Types of Health Care Data: Empirical Study.

IF 3.1 3区 医学 Q2 MEDICAL INFORMATICS JMIR Medical Informatics Pub Date : 2025-01-22 DOI:10.2196/66444
Dongle Wei, Pan Gao, Yunkai Zhai
{"title":"The Impact of Data Control and Delayed Discounting on the Public's Willingness to Share Different Types of Health Care Data: Empirical Study.","authors":"Dongle Wei, Pan Gao, Yunkai Zhai","doi":"10.2196/66444","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Health data typically include patient-generated data and clinical medical data. Different types of data contribute to disease prevention, precision medicine, and the overall improvement of health care. With the introduction of regulations such as the Health Insurance Portability and Accountability Act (HIPAA), individuals play a key role in the sharing and application of personal health data.</p><p><strong>Objective: </strong>This study aims to explore the impact of different types of health data on users' willingness to share. Additionally, it analyzes the effect of data control and delay discounting rate on this process.</p><p><strong>Methods: </strong>The results of a web-based survey were analyzed to examine individuals' perceptions of sharing different types of health data and how data control and delay discounting rates influenced their decisions. We recruited participants for our study through the web-based platform \"Wenjuanxing.\" After screening, we obtained 257 valid responses. Regression analysis was used to investigate the impact of data control, delayed discounting, and mental accounting on the public's willingness to share different types of health care data.</p><p><strong>Results: </strong>Our findings indicate that the type of health data does not significantly affect the perceived benefits of data sharing. Instead, it negatively influences willingness to share by indirectly affecting data acquisition costs and perceived risks. Our results also show that data control reduces the perceived risks associated with sharing, while higher delay discounting rates lead to an overestimation of data acquisition costs and perceived risks.</p><p><strong>Conclusions: </strong>Individuals' willingness to share data is primarily influenced by costs. To promote the acquisition and development of personal health data, stakeholders should strengthen individuals' control over their data or provide direct short-term incentives.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e66444"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11778728/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/66444","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Health data typically include patient-generated data and clinical medical data. Different types of data contribute to disease prevention, precision medicine, and the overall improvement of health care. With the introduction of regulations such as the Health Insurance Portability and Accountability Act (HIPAA), individuals play a key role in the sharing and application of personal health data.

Objective: This study aims to explore the impact of different types of health data on users' willingness to share. Additionally, it analyzes the effect of data control and delay discounting rate on this process.

Methods: The results of a web-based survey were analyzed to examine individuals' perceptions of sharing different types of health data and how data control and delay discounting rates influenced their decisions. We recruited participants for our study through the web-based platform "Wenjuanxing." After screening, we obtained 257 valid responses. Regression analysis was used to investigate the impact of data control, delayed discounting, and mental accounting on the public's willingness to share different types of health care data.

Results: Our findings indicate that the type of health data does not significantly affect the perceived benefits of data sharing. Instead, it negatively influences willingness to share by indirectly affecting data acquisition costs and perceived risks. Our results also show that data control reduces the perceived risks associated with sharing, while higher delay discounting rates lead to an overestimation of data acquisition costs and perceived risks.

Conclusions: Individuals' willingness to share data is primarily influenced by costs. To promote the acquisition and development of personal health data, stakeholders should strengthen individuals' control over their data or provide direct short-term incentives.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR Medical Informatics
JMIR Medical Informatics Medicine-Health Informatics
CiteScore
7.90
自引率
3.10%
发文量
173
审稿时长
12 weeks
期刊介绍: JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals. Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.
期刊最新文献
Machine Learning-Based Risk Factor Analysis and Prediction Model Construction for the Occurrence of Chronic Heart Failure: Health Ecologic Study. Smart Contracts and Shared Platforms in Sustainable Health Care: Systematic Review. Diagnostic Decision-Making Variability Between Novice and Expert Optometrists for Glaucoma: Comparative Analysis to Inform AI System Design. The Social Construction of Categorical Data: Mixed Methods Approach to Assessing Data Features in Publicly Available Datasets. Digital Representation of Patients as Medical Digital Twins: Data-Centric Viewpoint.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1