Classifying Unstructured Text in Electronic Health Records for Mental Health Prediction Models: Large Language Model Evaluation Study.

IF 3.1 3区 医学 Q2 MEDICAL INFORMATICS JMIR Medical Informatics Pub Date : 2025-01-21 DOI:10.2196/65454
Nicholas C Cardamone, Mark Olfson, Timothy Schmutte, Lyle Ungar, Tony Liu, Sara W Cullen, Nathaniel J Williams, Steven C Marcus
{"title":"Classifying Unstructured Text in Electronic Health Records for Mental Health Prediction Models: Large Language Model Evaluation Study.","authors":"Nicholas C Cardamone, Mark Olfson, Timothy Schmutte, Lyle Ungar, Tony Liu, Sara W Cullen, Nathaniel J Williams, Steven C Marcus","doi":"10.2196/65454","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Prediction models have demonstrated a range of applications across medicine, including using electronic health record (EHR) data to identify hospital readmission and mortality risk. Large language models (LLMs) can transform unstructured EHR text into structured features, which can then be integrated into statistical prediction models, ensuring that the results are both clinically meaningful and interpretable.</p><p><strong>Objective: </strong>This study aims to compare the classification decisions made by clinical experts with those generated by a state-of-the-art LLM, using terms extracted from a large EHR data set of individuals with mental health disorders seen in emergency departments (EDs).</p><p><strong>Methods: </strong>Using a dataset from the EHR systems of more than 50 health care provider organizations in the United States from 2016 to 2021, we extracted all clinical terms that appeared in at least 1000 records of individuals admitted to the ED for a mental health-related problem from a source population of over 6 million ED episodes. Two experienced mental health clinicians (one medically trained psychiatrist and one clinical psychologist) reached consensus on the classification of EHR terms and diagnostic codes into categories. We evaluated an LLM's agreement with clinical judgment across three classification tasks as follows: (1) classify terms into \"mental health\" or \"physical health\", (2) classify mental health terms into 1 of 42 prespecified categories, and (3) classify physical health terms into 1 of 19 prespecified broad categories.</p><p><strong>Results: </strong>There was high agreement between the LLM and clinical experts when categorizing 4553 terms as \"mental health\" or \"physical health\" (κ=0.77, 95% CI 0.75-0.80). However, there was still considerable variability in LLM-clinician agreement on the classification of mental health terms (κ=0.62, 95% CI 0.59-0.66) and physical health terms (κ=0.69, 95% CI 0.67-0.70).</p><p><strong>Conclusions: </strong>The LLM displayed high agreement with clinical experts when classifying EHR terms into certain mental health or physical health term categories. However, agreement with clinical experts varied considerably within both sets of mental and physical health term categories. Importantly, the use of LLMs presents an alternative to manual human coding, presenting great potential to create interpretable features for prediction models.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e65454"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/65454","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Prediction models have demonstrated a range of applications across medicine, including using electronic health record (EHR) data to identify hospital readmission and mortality risk. Large language models (LLMs) can transform unstructured EHR text into structured features, which can then be integrated into statistical prediction models, ensuring that the results are both clinically meaningful and interpretable.

Objective: This study aims to compare the classification decisions made by clinical experts with those generated by a state-of-the-art LLM, using terms extracted from a large EHR data set of individuals with mental health disorders seen in emergency departments (EDs).

Methods: Using a dataset from the EHR systems of more than 50 health care provider organizations in the United States from 2016 to 2021, we extracted all clinical terms that appeared in at least 1000 records of individuals admitted to the ED for a mental health-related problem from a source population of over 6 million ED episodes. Two experienced mental health clinicians (one medically trained psychiatrist and one clinical psychologist) reached consensus on the classification of EHR terms and diagnostic codes into categories. We evaluated an LLM's agreement with clinical judgment across three classification tasks as follows: (1) classify terms into "mental health" or "physical health", (2) classify mental health terms into 1 of 42 prespecified categories, and (3) classify physical health terms into 1 of 19 prespecified broad categories.

Results: There was high agreement between the LLM and clinical experts when categorizing 4553 terms as "mental health" or "physical health" (κ=0.77, 95% CI 0.75-0.80). However, there was still considerable variability in LLM-clinician agreement on the classification of mental health terms (κ=0.62, 95% CI 0.59-0.66) and physical health terms (κ=0.69, 95% CI 0.67-0.70).

Conclusions: The LLM displayed high agreement with clinical experts when classifying EHR terms into certain mental health or physical health term categories. However, agreement with clinical experts varied considerably within both sets of mental and physical health term categories. Importantly, the use of LLMs presents an alternative to manual human coding, presenting great potential to create interpretable features for prediction models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR Medical Informatics
JMIR Medical Informatics Medicine-Health Informatics
CiteScore
7.90
自引率
3.10%
发文量
173
审稿时长
12 weeks
期刊介绍: JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals. Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.
期刊最新文献
Machine Learning-Based Risk Factor Analysis and Prediction Model Construction for the Occurrence of Chronic Heart Failure: Health Ecologic Study. Smart Contracts and Shared Platforms in Sustainable Health Care: Systematic Review. Diagnostic Decision-Making Variability Between Novice and Expert Optometrists for Glaucoma: Comparative Analysis to Inform AI System Design. The Social Construction of Categorical Data: Mixed Methods Approach to Assessing Data Features in Publicly Available Datasets. Digital Representation of Patients as Medical Digital Twins: Data-Centric Viewpoint.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1