PALMS: Plane-based Accessible Indoor Localization Using Mobile Smartphones.

Yunqian Cheng, Roberto Manduchi
{"title":"PALMS: Plane-based Accessible Indoor Localization Using Mobile Smartphones.","authors":"Yunqian Cheng, Roberto Manduchi","doi":"10.1109/ipin62893.2024.10786167","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we present PALMS, an innovative indoor global localization and relocalization system for mobile smartphones that utilizes publicly available floor plans. Unlike most vision-based methods that require constant visual input, our system adopts a dynamic form of localization that considers a single instantaneous observation and odometry data. The core contribution of this work is the introduction of a particle filter initialization method that leverages the Certainly Empty Space (CES) constraint along with principal orientation matching. This approach creates a spatial probability distribution of the device's location, significantly improving localization accuracy and reducing particle filter convergence time. Our experimental evaluations demonstrate that PALMS outperforms traditional methods with uniformly initialized particle filters, providing a more efficient and accessible approach to indoor wayfinding. By eliminating the need for prior environmental fingerprinting, PALMS provides a scalable and practical approach to indoor navigation.</p>","PeriodicalId":510887,"journal":{"name":"International Conference on Indoor Positioning and Indoor Navigation : [proceedings]. International Conference on Indoor Positioning and Indoor Navigation","volume":"2024 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759051/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Indoor Positioning and Indoor Navigation : [proceedings]. International Conference on Indoor Positioning and Indoor Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ipin62893.2024.10786167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present PALMS, an innovative indoor global localization and relocalization system for mobile smartphones that utilizes publicly available floor plans. Unlike most vision-based methods that require constant visual input, our system adopts a dynamic form of localization that considers a single instantaneous observation and odometry data. The core contribution of this work is the introduction of a particle filter initialization method that leverages the Certainly Empty Space (CES) constraint along with principal orientation matching. This approach creates a spatial probability distribution of the device's location, significantly improving localization accuracy and reducing particle filter convergence time. Our experimental evaluations demonstrate that PALMS outperforms traditional methods with uniformly initialized particle filters, providing a more efficient and accessible approach to indoor wayfinding. By eliminating the need for prior environmental fingerprinting, PALMS provides a scalable and practical approach to indoor navigation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PALMS: Plane-based Accessible Indoor Localization Using Mobile Smartphones. Robust Indoor Pedestrian Backtracking Using Magnetic Signatures and Inertial Data. Step Length Is a More Reliable Measurement Than Walking Speed for Pedestrian Dead-Reckoning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1