首页 > 最新文献

International Conference on Indoor Positioning and Indoor Navigation : [proceedings]. International Conference on Indoor Positioning and Indoor Navigation最新文献

英文 中文
Robust Indoor Pedestrian Backtracking Using Magnetic Signatures and Inertial Data. 基于磁信号和惯性数据的室内稳健行人回溯。
Chia Hsuan Tsai, Roberto Manduchi

Navigating unfamiliar environments can be challenging for visually impaired individuals due to difficulties in recognizing distant landmarks or visual cues. This work focuses on a particular form of wayfinding, specifically backtracking a previously taken path, which can be useful for blind pedestrians. We propose a hands-free indoor navigation solution using a smartphone without relying on pre-existing maps or external infrastructure. Our hybrid matching method integrates machine learning to enhance positioning accuracy, addressing real-life challenges such as odometry errors or deviations from the correct path. Testing with datasets from visually impaired individuals demonstrates the potential of our approach in providing reliable backtracking assistance.

由于难以识别远处的地标或视觉线索,在陌生的环境中导航对视障人士来说可能是一项挑战。这项工作的重点是一种特殊形式的寻路,特别是回溯以前走过的路径,这对盲人行人很有用。我们提出了一种使用智能手机的免提室内导航解决方案,而不依赖于已有的地图或外部基础设施。我们的混合匹配方法集成了机器学习,以提高定位精度,解决现实生活中的挑战,如里程计误差或偏离正确路径。使用视障人士的数据集进行测试,证明了我们的方法在提供可靠的回溯帮助方面的潜力。
{"title":"Robust Indoor Pedestrian Backtracking Using Magnetic Signatures and Inertial Data.","authors":"Chia Hsuan Tsai, Roberto Manduchi","doi":"10.1109/ipin62893.2024.10786145","DOIUrl":"10.1109/ipin62893.2024.10786145","url":null,"abstract":"<p><p>Navigating unfamiliar environments can be challenging for visually impaired individuals due to difficulties in recognizing distant landmarks or visual cues. This work focuses on a particular form of wayfinding, specifically backtracking a previously taken path, which can be useful for blind pedestrians. We propose a hands-free indoor navigation solution using a smartphone without relying on pre-existing maps or external infrastructure. Our hybrid matching method integrates machine learning to enhance positioning accuracy, addressing real-life challenges such as odometry errors or deviations from the correct path. Testing with datasets from visually impaired individuals demonstrates the potential of our approach in providing reliable backtracking assistance.</p>","PeriodicalId":510887,"journal":{"name":"International Conference on Indoor Positioning and Indoor Navigation : [proceedings]. International Conference on Indoor Positioning and Indoor Navigation","volume":"2024 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759050/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PALMS: Plane-based Accessible Indoor Localization Using Mobile Smartphones. 手掌:利用手机智能手机进行基于飞机的无障碍室内定位。
Yunqian Cheng, Roberto Manduchi

In this paper, we present PALMS, an innovative indoor global localization and relocalization system for mobile smartphones that utilizes publicly available floor plans. Unlike most vision-based methods that require constant visual input, our system adopts a dynamic form of localization that considers a single instantaneous observation and odometry data. The core contribution of this work is the introduction of a particle filter initialization method that leverages the Certainly Empty Space (CES) constraint along with principal orientation matching. This approach creates a spatial probability distribution of the device's location, significantly improving localization accuracy and reducing particle filter convergence time. Our experimental evaluations demonstrate that PALMS outperforms traditional methods with uniformly initialized particle filters, providing a more efficient and accessible approach to indoor wayfinding. By eliminating the need for prior environmental fingerprinting, PALMS provides a scalable and practical approach to indoor navigation.

在本文中,我们提出了palm,这是一种创新的室内全球定位和再定位系统,用于移动智能手机,利用公开可用的平面图。与大多数需要持续视觉输入的基于视觉的方法不同,我们的系统采用动态形式的定位,考虑单个瞬时观察和里程计数据。这项工作的核心贡献是引入了一种粒子滤波器初始化方法,该方法利用了肯定空空间(CES)约束以及主方向匹配。该方法创建了设备位置的空间概率分布,显著提高了定位精度并缩短了粒子滤波收敛时间。我们的实验评估表明,PALMS优于具有均匀初始化粒子过滤器的传统方法,为室内寻路提供了更有效和更容易获得的方法。通过消除预先环境指纹识别的需要,PALMS为室内导航提供了一种可扩展且实用的方法。
{"title":"PALMS: Plane-based Accessible Indoor Localization Using Mobile Smartphones.","authors":"Yunqian Cheng, Roberto Manduchi","doi":"10.1109/ipin62893.2024.10786167","DOIUrl":"10.1109/ipin62893.2024.10786167","url":null,"abstract":"<p><p>In this paper, we present PALMS, an innovative indoor global localization and relocalization system for mobile smartphones that utilizes publicly available floor plans. Unlike most vision-based methods that require constant visual input, our system adopts a dynamic form of localization that considers a single instantaneous observation and odometry data. The core contribution of this work is the introduction of a particle filter initialization method that leverages the Certainly Empty Space (CES) constraint along with principal orientation matching. This approach creates a spatial probability distribution of the device's location, significantly improving localization accuracy and reducing particle filter convergence time. Our experimental evaluations demonstrate that PALMS outperforms traditional methods with uniformly initialized particle filters, providing a more efficient and accessible approach to indoor wayfinding. By eliminating the need for prior environmental fingerprinting, PALMS provides a scalable and practical approach to indoor navigation.</p>","PeriodicalId":510887,"journal":{"name":"International Conference on Indoor Positioning and Indoor Navigation : [proceedings]. International Conference on Indoor Positioning and Indoor Navigation","volume":"2024 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759051/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Step Length Is a More Reliable Measurement Than Walking Speed for Pedestrian Dead-Reckoning. 步长是比步行速度更可靠的行人死角测量方法。
Fatemeh Elyasi, Roberto Manduchi

Pedestrian dead reckoning (PDR) relies on the estimation of the length of each step taken by the walker in a path from inertial data (e.g. as recorded by a smartphone). Existing algorithms either estimate step lengths directly, or predict walking speed, which can then be integrated over a step period to obtain step length. We present an analysis, using a common architecture formed by an LSTM followed by four fully connected layers, of the quality of reconstruction when predicting step length vs. walking speed. Our experiments, conducted on a data set collected by twelve participants, strongly suggest that step length can be predicted more reliably than average walking speed over each step.

行人惯性推算(PDR)依靠惯性数据(如智能手机记录的数据)估算步行者在路径上每一步的长度。现有的算法要么直接估算步长,要么预测行走速度,然后将行走速度与步长周期进行整合,得出步长。我们使用一个由 LSTM 和四个全连接层组成的通用架构,对预测步长与步行速度时的重构质量进行了分析。我们在 12 名参与者收集的数据集上进行了实验,结果强烈表明,预测步长比预测每一步的平均步行速度更可靠。
{"title":"Step Length Is a More Reliable Measurement Than Walking Speed for Pedestrian Dead-Reckoning.","authors":"Fatemeh Elyasi, Roberto Manduchi","doi":"10.1109/ipin57070.2023.10332483","DOIUrl":"10.1109/ipin57070.2023.10332483","url":null,"abstract":"<p><p>Pedestrian dead reckoning (PDR) relies on the estimation of the length of each step taken by the walker in a path from inertial data (e.g. as recorded by a smartphone). Existing algorithms either estimate step lengths directly, or predict walking speed, which can then be integrated over a step period to obtain step length. We present an analysis, using a common architecture formed by an LSTM followed by four fully connected layers, of the quality of reconstruction when predicting step length vs. walking speed. Our experiments, conducted on a data set collected by twelve participants, strongly suggest that step length can be predicted more reliably than average walking speed over each step.</p>","PeriodicalId":510887,"journal":{"name":"International Conference on Indoor Positioning and Indoor Navigation : [proceedings]. International Conference on Indoor Positioning and Indoor Navigation","volume":"2023 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10752414/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139050046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Conference on Indoor Positioning and Indoor Navigation : [proceedings]. International Conference on Indoor Positioning and Indoor Navigation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1