Advancing connected vehicle security through real-time sensor anomaly detection and recovery

IF 5.8 2区 计算机科学 Q1 TELECOMMUNICATIONS Vehicular Communications Pub Date : 2025-01-18 DOI:10.1016/j.vehcom.2025.100876
Akshit Singh, Heena Rathore
{"title":"Advancing connected vehicle security through real-time sensor anomaly detection and recovery","authors":"Akshit Singh, Heena Rathore","doi":"10.1016/j.vehcom.2025.100876","DOIUrl":null,"url":null,"abstract":"Connected Vehicles (CVs) are a crucial element in the evolution of smart transportation systems, utilizing communication and sensing technologies to interact with each other and with infrastructure. As these vehicles become more interconnected, the risk of their components being affected by anomalies or intentional malicious attacks grows. It is essential, therefore, to identify and filter out any anomalous data to ensure reliable decision-making. Existing solutions for anomaly detection in CVs include methods such as kalman filter, cumulative summation, convolutional neural networks and other machine learning models. However, a prevalent issue is the limited universality of anomaly datasets along with the variability introduced by simulated data. Additionally, there are few methods for recovering the network from anomalies using sensor information. In this paper, we address these limitations by utilizing the Tampa CV (TCV) dataset and incorporating anomalies such as bias, noise, and spikes. Furthermore, we present a novel method for real-time anomaly detection in CVs using Bayesian Online Change Point Detection (BOCPD). We propose a unique recovery mechanism that employs Bayesian forecasting to interpret identified anomalies, marking the first of its kind in this field. This approach significantly enhances the security of CV systems by seamlessly merging instant detection with swift recovery, ensuring continuous protection against data integrity threats. Results demonstrate that the proposed model achieves an average accuracy improvement of 53.83 % over other machine learning models. This paper makes advancement through real-time anomaly detection and recovery mechanisms, thus significantly improving the resilience of smart transportation systems against data integrity threats.","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"10 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.vehcom.2025.100876","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Connected Vehicles (CVs) are a crucial element in the evolution of smart transportation systems, utilizing communication and sensing technologies to interact with each other and with infrastructure. As these vehicles become more interconnected, the risk of their components being affected by anomalies or intentional malicious attacks grows. It is essential, therefore, to identify and filter out any anomalous data to ensure reliable decision-making. Existing solutions for anomaly detection in CVs include methods such as kalman filter, cumulative summation, convolutional neural networks and other machine learning models. However, a prevalent issue is the limited universality of anomaly datasets along with the variability introduced by simulated data. Additionally, there are few methods for recovering the network from anomalies using sensor information. In this paper, we address these limitations by utilizing the Tampa CV (TCV) dataset and incorporating anomalies such as bias, noise, and spikes. Furthermore, we present a novel method for real-time anomaly detection in CVs using Bayesian Online Change Point Detection (BOCPD). We propose a unique recovery mechanism that employs Bayesian forecasting to interpret identified anomalies, marking the first of its kind in this field. This approach significantly enhances the security of CV systems by seamlessly merging instant detection with swift recovery, ensuring continuous protection against data integrity threats. Results demonstrate that the proposed model achieves an average accuracy improvement of 53.83 % over other machine learning models. This paper makes advancement through real-time anomaly detection and recovery mechanisms, thus significantly improving the resilience of smart transportation systems against data integrity threats.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Vehicular Communications
Vehicular Communications Engineering-Electrical and Electronic Engineering
CiteScore
12.70
自引率
10.40%
发文量
88
审稿时长
62 days
期刊介绍: Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier. The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications: Vehicle to vehicle and vehicle to infrastructure communications Channel modelling, modulating and coding Congestion Control and scalability issues Protocol design, testing and verification Routing in vehicular networks Security issues and countermeasures Deployment and field testing Reducing energy consumption and enhancing safety of vehicles Wireless in–car networks Data collection and dissemination methods Mobility and handover issues Safety and driver assistance applications UAV Underwater communications Autonomous cooperative driving Social networks Internet of vehicles Standardization of protocols.
期刊最新文献
Detection of zero-day attacks via sample augmentation for the Internet of Vehicles RORA: Reinforcement learning based optimal distributed resource allocation strategies in vehicular cognitive radio networks for 6G A novel cylindrical filtering-based greedy perimeter stateless routing scheme in flying ad hoc networks Advancing connected vehicle security through real-time sensor anomaly detection and recovery Privacy-enhanced multi-region data aggregation for Internet of Vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1