Akkermansia muciniphila supplementation in patients with overweight/obese type 2 diabetes: Efficacy depends on its baseline levels in the gut

IF 27.7 1区 生物学 Q1 CELL BIOLOGY Cell metabolism Pub Date : 2025-01-28 DOI:10.1016/j.cmet.2024.12.010
Yifei Zhang, Ruixin Liu, Yufei Chen, Zhiwen Cao, Cong Liu, Riqiang Bao, Yufan Wang, Shan Huang, Shijia Pan, Li Qin, Jiqiu Wang, Guang Ning, Weiqing Wang
{"title":"Akkermansia muciniphila supplementation in patients with overweight/obese type 2 diabetes: Efficacy depends on its baseline levels in the gut","authors":"Yifei Zhang, Ruixin Liu, Yufei Chen, Zhiwen Cao, Cong Liu, Riqiang Bao, Yufan Wang, Shan Huang, Shijia Pan, Li Qin, Jiqiu Wang, Guang Ning, Weiqing Wang","doi":"10.1016/j.cmet.2024.12.010","DOIUrl":null,"url":null,"abstract":"<em>Akkermansia muciniphila</em> is a promising target for managing obesity and type 2 diabetes (T2D), but human studies are limited. We conducted a 12-week randomized, double-blind, placebo-controlled trial involving 58 participants with overweight or obese T2D, who received <em>A. muciniphila</em> (AKK-WST01) or placebo, along with routine lifestyle guidance. Both groups showed decreases in body weight and glycated hemoglobin (HbA1c), without significant between-group differences. In participants with low baseline <em>A. muciniphila</em>, AKK-WST01 supplementation showed high colonization efficiency and significant reductions in body weight, fat mass, and HbA1c, which were not found in the placebo group. However, AKK-WST01 supplementation showed poor colonization and no significant clinical improvements in participants with high baseline <em>A. muciniphila</em>. These findings were verified in germ-free mice receiving feces with low or high <em>A. muciniphila</em>. Our study indicates that metabolic benefits of <em>A. muciniphila</em> supplementation could depend on its baseline intestinal levels, supporting the potential for gut microbiota-guided probiotic supplementation. (<span><span>ClinicalTrials.gov</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span> number, NCT04797442).","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"19 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.12.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Akkermansia muciniphila is a promising target for managing obesity and type 2 diabetes (T2D), but human studies are limited. We conducted a 12-week randomized, double-blind, placebo-controlled trial involving 58 participants with overweight or obese T2D, who received A. muciniphila (AKK-WST01) or placebo, along with routine lifestyle guidance. Both groups showed decreases in body weight and glycated hemoglobin (HbA1c), without significant between-group differences. In participants with low baseline A. muciniphila, AKK-WST01 supplementation showed high colonization efficiency and significant reductions in body weight, fat mass, and HbA1c, which were not found in the placebo group. However, AKK-WST01 supplementation showed poor colonization and no significant clinical improvements in participants with high baseline A. muciniphila. These findings were verified in germ-free mice receiving feces with low or high A. muciniphila. Our study indicates that metabolic benefits of A. muciniphila supplementation could depend on its baseline intestinal levels, supporting the potential for gut microbiota-guided probiotic supplementation. (ClinicalTrials.gov number, NCT04797442).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell metabolism
Cell metabolism 生物-内分泌学与代谢
CiteScore
48.60
自引率
1.40%
发文量
173
审稿时长
2.5 months
期刊介绍: Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others. Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.
期刊最新文献
Akkermansia muciniphila supplementation in patients with overweight/obese type 2 diabetes: Efficacy depends on its baseline levels in the gut Redirecting glucose flux during in vitro expansion generates epigenetically and metabolically superior T cells for cancer immunotherapy Muscle-derived small extracellular vesicles induce liver fibrosis during overtraining Ergothioneine improves healthspan of aged animals by enhancing cGPDH activity through CSE-dependent persulfidation Mannose: A game-changer for T cell immunotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1