{"title":"Fermented chrysanthemum stem as a source of natural phenolic compounds to alleviate tomato bacterial wilt disease","authors":"Peng Ren, Peijie Chen, Saisai Guo, Xinlan Mei, Gaofei Jiang, Tianjie Yang, Xiaofang Wang, Yangchun Xu, Qirong Shen, Zhong Wei","doi":"10.1093/hr/uhaf027","DOIUrl":null,"url":null,"abstract":"Natural antimicrobial compounds (NACs) in the plant stem are crucial for replacing conventional synthetic pesticides in the control of soil-borne diseases, and microbial fermentation can enhance their concentration and bioactivity. In this study, the stems of ten plant species were collected for fermentation by probiotic bacteria Bacillus amyloliquefaciens T-5 to identify the most effective plant resource for controlling tomato bacterial wilt disease and discover key NACs. Chrysanthemum stem was identified as an optimal fermentation substrate, as its water-soluble extracts (WSEs) significantly inhibited the growth of pathogenic Ralstonia solanacearum and effectively alleviated tomato wilt under greenhouse conditions. Key metabolites, primarily phenolic acids including 2-hydroxy-3-phenylpropanoic acid (PLA), 3-(4-hydroxyphenyl)-propionic acid (HPPA), and mandelic acid (MA), were determined by metabolomics, all of which significantly inhibited the growth of R. solanacearum at a concentration of 0.2 mM, with only HPPA effectively controlling tomato wilt. Thus, fermented chrysanthemum stem contains NACs that are effective against bacterial wilt, providing a green option for controlling soil-borne diseases.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"19 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf027","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Natural antimicrobial compounds (NACs) in the plant stem are crucial for replacing conventional synthetic pesticides in the control of soil-borne diseases, and microbial fermentation can enhance their concentration and bioactivity. In this study, the stems of ten plant species were collected for fermentation by probiotic bacteria Bacillus amyloliquefaciens T-5 to identify the most effective plant resource for controlling tomato bacterial wilt disease and discover key NACs. Chrysanthemum stem was identified as an optimal fermentation substrate, as its water-soluble extracts (WSEs) significantly inhibited the growth of pathogenic Ralstonia solanacearum and effectively alleviated tomato wilt under greenhouse conditions. Key metabolites, primarily phenolic acids including 2-hydroxy-3-phenylpropanoic acid (PLA), 3-(4-hydroxyphenyl)-propionic acid (HPPA), and mandelic acid (MA), were determined by metabolomics, all of which significantly inhibited the growth of R. solanacearum at a concentration of 0.2 mM, with only HPPA effectively controlling tomato wilt. Thus, fermented chrysanthemum stem contains NACs that are effective against bacterial wilt, providing a green option for controlling soil-borne diseases.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.