The trajectory of crime: Integrating mouse-tracking into concealed memory detection.

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL Behavior Research Methods Pub Date : 2025-01-27 DOI:10.3758/s13428-024-02594-y
Xinyi Julia Xu, Xianqing Liu, Xiaoqing Hu, Haiyan Wu
{"title":"The trajectory of crime: Integrating mouse-tracking into concealed memory detection.","authors":"Xinyi Julia Xu, Xianqing Liu, Xiaoqing Hu, Haiyan Wu","doi":"10.3758/s13428-024-02594-y","DOIUrl":null,"url":null,"abstract":"<p><p>The autobiographical implicit association test (aIAT) is an approach of memory detection that can be used to identify true autobiographical memories. This study incorporates mouse-tracking (MT) into aIAT, which offers a more robust technique of memory detection. Participants were assigned to mock crime and then performed the aIAT with MT. Results showed that mouse metrics exhibited IAT effects that correlated with the IAT effect of RT and showed differences in autobiographical and irrelevant events while RT did not. Our findings suggest the validity of MT in offering measurement of the IAT effect. We also observed different patterns in mouse trajectories and velocity for autobiographical and irrelevant events. Lastly, utilizing MT metric, we identified that the Past Negative Score was positively correlated with IAT effect. Integrating the Past Negative Score and AUC into computational models improved the simulation results. Our model captured the ubiquitous implicit association between autobiographical events and the attribute True, and offered a mechanistic account for implicit bias. Across the traditional IAT and the MT results, we provide evidence that MT-aIAT can better capture the memory identification and with implications in crime detection.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 2","pages":"78"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02594-y","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The autobiographical implicit association test (aIAT) is an approach of memory detection that can be used to identify true autobiographical memories. This study incorporates mouse-tracking (MT) into aIAT, which offers a more robust technique of memory detection. Participants were assigned to mock crime and then performed the aIAT with MT. Results showed that mouse metrics exhibited IAT effects that correlated with the IAT effect of RT and showed differences in autobiographical and irrelevant events while RT did not. Our findings suggest the validity of MT in offering measurement of the IAT effect. We also observed different patterns in mouse trajectories and velocity for autobiographical and irrelevant events. Lastly, utilizing MT metric, we identified that the Past Negative Score was positively correlated with IAT effect. Integrating the Past Negative Score and AUC into computational models improved the simulation results. Our model captured the ubiquitous implicit association between autobiographical events and the attribute True, and offered a mechanistic account for implicit bias. Across the traditional IAT and the MT results, we provide evidence that MT-aIAT can better capture the memory identification and with implications in crime detection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
期刊最新文献
Testing for group differences in multilevel vector autoregressive models. Distribution-free Bayesian analyses with the DFBA statistical package. Jiwar: A database and calculator for word neighborhood measures in 40 languages. Open-access network science: Investigating phonological similarity networks based on the SUBTLEX-US lexicon. Survey measures of metacognitive monitoring are often false.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1