Formononetin ameliorates polycystic ovary syndrome through suppressing NLRP3 inflammasome.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Medicine Pub Date : 2025-01-27 DOI:10.1186/s10020-025-01092-x
Zhuo Liu, Rui-Han Wang, Ke-Hua Wang
{"title":"Formononetin ameliorates polycystic ovary syndrome through suppressing NLRP3 inflammasome.","authors":"Zhuo Liu, Rui-Han Wang, Ke-Hua Wang","doi":"10.1186/s10020-025-01092-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by multiple clinical features, including anovulation, hyperandrogenism, and polycystic ovarian morphology, leading to infertility. Formononetin (FMN), which is a major bioactive isoflavone compound in Astragalus membranaceus, exerts anti-inflammatory effects. However, whether FMN is effective in the treatment of PCOS remains unknown. This study aims to explore the effects and the possible mechanisms of FMN in PCOS.</p><p><strong>Methods: </strong>Dehydroepiandrosterone (DHEA)-induced PCOS rats and dihydrotestosterone (DHT)-induced PCOS cell models were established. Fifty rats were randomly assigned into five groups of 10 rats each: Control, PCOS, PCOS + FMN (15 mg/kg), PCOS + FMN (30 mg/kg), and PCOS + FMN (60 mg/kg). Fasting blood glucose, insulin, luteinizing hormone, follicle-stimulating hormone, testosterone, and estradiol were detected in DHEA-induced PCOS rats. Ovarian histological changes and apoptosis were evaluated utilizing H&E and TUNEL staining. Subsequently, the effects of FMN on oxidative stress and inflammatory responses in the DHEA-induced PCOS rat model and DHT-induced PCOS cell model were explored. Besides, the function of FMN on cell viability and apoptosis in DHT-induced PCOS cell model were explored by using CCK-8 assay and flow cytometry. Protein expression was detected via western blot and immunofluorescence staining in the DHEA-induced PCOS rat model and DHT-induced PCOS cell model.</p><p><strong>Results: </strong>FMN alleviated PCOS symptoms and reduced inflammation, cell apoptosis, and oxidative stress in DHEA-induced PCOS rats and DHT-induced KGN cells. Additionally, FMN suppressed NLRP3 inflammasome activation in both models. In the DHT-induced PCOS cell model, nigericin (a activator of NLRP3) reversed the functions of FMN on inflammation, apoptosis, and oxidative stress.</p><p><strong>Conclusion: </strong>These findings demonstrated that FMN could alleviate PCOS by repressing inflammation, apoptosis, as well as oxidative stress in vivo and in vitro via inhibition of the NLRP3 inflammasome.</p><p><strong>Highlights: </strong>1. FMN improved PCOS symptoms. 2. FMN alleviated cell apoptosis, inflammation and oxidative stress in PCOS. 3. FMN inhibited the activation of NLRP3 inflammasome in PCOS.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"27"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01092-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by multiple clinical features, including anovulation, hyperandrogenism, and polycystic ovarian morphology, leading to infertility. Formononetin (FMN), which is a major bioactive isoflavone compound in Astragalus membranaceus, exerts anti-inflammatory effects. However, whether FMN is effective in the treatment of PCOS remains unknown. This study aims to explore the effects and the possible mechanisms of FMN in PCOS.

Methods: Dehydroepiandrosterone (DHEA)-induced PCOS rats and dihydrotestosterone (DHT)-induced PCOS cell models were established. Fifty rats were randomly assigned into five groups of 10 rats each: Control, PCOS, PCOS + FMN (15 mg/kg), PCOS + FMN (30 mg/kg), and PCOS + FMN (60 mg/kg). Fasting blood glucose, insulin, luteinizing hormone, follicle-stimulating hormone, testosterone, and estradiol were detected in DHEA-induced PCOS rats. Ovarian histological changes and apoptosis were evaluated utilizing H&E and TUNEL staining. Subsequently, the effects of FMN on oxidative stress and inflammatory responses in the DHEA-induced PCOS rat model and DHT-induced PCOS cell model were explored. Besides, the function of FMN on cell viability and apoptosis in DHT-induced PCOS cell model were explored by using CCK-8 assay and flow cytometry. Protein expression was detected via western blot and immunofluorescence staining in the DHEA-induced PCOS rat model and DHT-induced PCOS cell model.

Results: FMN alleviated PCOS symptoms and reduced inflammation, cell apoptosis, and oxidative stress in DHEA-induced PCOS rats and DHT-induced KGN cells. Additionally, FMN suppressed NLRP3 inflammasome activation in both models. In the DHT-induced PCOS cell model, nigericin (a activator of NLRP3) reversed the functions of FMN on inflammation, apoptosis, and oxidative stress.

Conclusion: These findings demonstrated that FMN could alleviate PCOS by repressing inflammation, apoptosis, as well as oxidative stress in vivo and in vitro via inhibition of the NLRP3 inflammasome.

Highlights: 1. FMN improved PCOS symptoms. 2. FMN alleviated cell apoptosis, inflammation and oxidative stress in PCOS. 3. FMN inhibited the activation of NLRP3 inflammasome in PCOS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
期刊最新文献
Formononetin ameliorates polycystic ovary syndrome through suppressing NLRP3 inflammasome. Accumulation of advanced oxidative protein products exacerbate satellite glial cells activation and neuropathic pain. Nobiletin restores the intestinal barrier of HFD-induced obese mice by promoting MHC-II expression and lipid metabolism. Disrupting of IGF2BP3-stabilized CLDN11 mRNA by TNF-α increases intestinal permeability in obesity-related severe acute pancreatitis. AdipoR1 enhances the radiation resistance via ESR1/CCNB1IP1/cyclin B1 pathway in hepatocellular carcinoma cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1