Strigolactones regulate Bambusa multiplex sheath senescence by promoting chlorophyll degradation.

IF 3.5 2区 农林科学 Q1 FORESTRY Tree physiology Pub Date : 2025-03-08 DOI:10.1093/treephys/tpaf011
Feng Que, Yaqi Zhu, Qingnan Liu, Qiang Wei
{"title":"Strigolactones regulate Bambusa multiplex sheath senescence by promoting chlorophyll degradation.","authors":"Feng Que, Yaqi Zhu, Qingnan Liu, Qiang Wei","doi":"10.1093/treephys/tpaf011","DOIUrl":null,"url":null,"abstract":"<p><p>Culm sheaths are capable of photosynthesis and are an important class of non-leaf organs in bamboo plants. The source-sink interaction mechanism has been found to play an important role in the interaction between culm sheaths and internodes in Bambusa multiplex. Research on the regulatory mechanisms of culm sheath senescence is important for the study of internode growth, but reports in this regard are limited. In this study, a weighted gene co-expression network analysis was performed on transcriptome data of B. multiplex culm sheaths at different developmental stages and identified some gene modules significantly related to the typical senescence stages (SS3 and SS4). Among these modules, one module significantly associated with both SS3 and SS4 was identified, and its hub gene (BmCCD8) was a key gene of the strigolactones (SLs) synthesis pathway. To verify the relationship between SLs and culm sheath senescence, we performed experiments such as detection of endogenous hormone, treatment with exogenous hormones, transmission electron microscopic observation and detection of gene expression levels. A positive relationship was found between the SL content and the degree of sheath senescence. Treatment with the artificial SL analog GR24 resulted in a significant decrease in chlorophyll content in the sheath, while treatment with the SL synthesis inhibitor Tis108 led to a significant increase in chlorophyll content. A different response pattern to exogenous GR24 and Tis108 was also observed in genes related to the chlorophyll degradation pathway. Chloroplasts were also found to begin degradation one day after the end of exogenous GR24 treatment. Thus, we concluded that SLs may regulate culm sheath senescence by promoting chlorophyll degradation.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpaf011","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Culm sheaths are capable of photosynthesis and are an important class of non-leaf organs in bamboo plants. The source-sink interaction mechanism has been found to play an important role in the interaction between culm sheaths and internodes in Bambusa multiplex. Research on the regulatory mechanisms of culm sheath senescence is important for the study of internode growth, but reports in this regard are limited. In this study, a weighted gene co-expression network analysis was performed on transcriptome data of B. multiplex culm sheaths at different developmental stages and identified some gene modules significantly related to the typical senescence stages (SS3 and SS4). Among these modules, one module significantly associated with both SS3 and SS4 was identified, and its hub gene (BmCCD8) was a key gene of the strigolactones (SLs) synthesis pathway. To verify the relationship between SLs and culm sheath senescence, we performed experiments such as detection of endogenous hormone, treatment with exogenous hormones, transmission electron microscopic observation and detection of gene expression levels. A positive relationship was found between the SL content and the degree of sheath senescence. Treatment with the artificial SL analog GR24 resulted in a significant decrease in chlorophyll content in the sheath, while treatment with the SL synthesis inhibitor Tis108 led to a significant increase in chlorophyll content. A different response pattern to exogenous GR24 and Tis108 was also observed in genes related to the chlorophyll degradation pathway. Chloroplasts were also found to begin degradation one day after the end of exogenous GR24 treatment. Thus, we concluded that SLs may regulate culm sheath senescence by promoting chlorophyll degradation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Tree physiology
Tree physiology 农林科学-林学
CiteScore
7.10
自引率
7.50%
发文量
133
审稿时长
1 months
期刊介绍: Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.
期刊最新文献
Integrated transcriptomic and metabolomic analyses reveal regulatory networks governing hub metabolic pathways in Fraxinus hupehensis seeds during germination. Water use strategies in pines and oaks across biomes are modulated by soil water availability. The effects of expression of a hyperthermophilic endoglucanase and nutrient conditions on poplar growth and physiology. The myb transcription factor PtoPHL3 positively regulates poplar resistance to canker disease caused by Dothiorella gregaria. Strigolactones regulate Bambusa multiplex sheath senescence by promoting chlorophyll degradation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1