Bethanie M Natalie, Elise Krespan, Yao Xiao, Katie M Becklin, Heather D Coleman
{"title":"The effects of expression of a hyperthermophilic endoglucanase and nutrient conditions on poplar growth and physiology.","authors":"Bethanie M Natalie, Elise Krespan, Yao Xiao, Katie M Becklin, Heather D Coleman","doi":"10.1093/treephys/tpaf029","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient production and processing of poplar biomass feedstock requires costly pretreatments and enzyme additives. Transgenic alterations of poplar can reduce the need for these inputs by increasing biomass, improving lignocellulose quality, and enhancing nutrient uptake. Previously, a transgenic line of poplar expressing a bacterial hyperthermophilic endoglucanase (TnCelB) in hybrid poplar (P39, Populus alba × grandidentata) was developed and characterized. This study reports the effects on the TnCelB transgenic poplar line under a reduced nutrient treatment. Overall, the nutrient treatment was the source of more observed significant differences than the genotype. Wild type and TnCelB poplar had similar responses in biomass allocation and net photosynthesis. TnCelB trees had a wrinkled leaf phenotype and relative to wild type, had reduced total biomass, reduced water use efficiency, and a decreased proportion of cellulose to hemicellulose and lignin. In low nutrient conditions, TnCelB trees had increased structural carbohydrates with stable lignin values. The TnCelB line presents a viable option for poplar biomass feedstock, offering biomass comparable to wild type poplar and more efficient processing, with only mild negative phenotypes.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpaf029","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient production and processing of poplar biomass feedstock requires costly pretreatments and enzyme additives. Transgenic alterations of poplar can reduce the need for these inputs by increasing biomass, improving lignocellulose quality, and enhancing nutrient uptake. Previously, a transgenic line of poplar expressing a bacterial hyperthermophilic endoglucanase (TnCelB) in hybrid poplar (P39, Populus alba × grandidentata) was developed and characterized. This study reports the effects on the TnCelB transgenic poplar line under a reduced nutrient treatment. Overall, the nutrient treatment was the source of more observed significant differences than the genotype. Wild type and TnCelB poplar had similar responses in biomass allocation and net photosynthesis. TnCelB trees had a wrinkled leaf phenotype and relative to wild type, had reduced total biomass, reduced water use efficiency, and a decreased proportion of cellulose to hemicellulose and lignin. In low nutrient conditions, TnCelB trees had increased structural carbohydrates with stable lignin values. The TnCelB line presents a viable option for poplar biomass feedstock, offering biomass comparable to wild type poplar and more efficient processing, with only mild negative phenotypes.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.