Gesture recognition from surface electromyography signals based on the SE-DenseNet network.

Ying Xiang, Wei Zheng, Jiajia Tang, You Dong, Yuhao Pang
{"title":"Gesture recognition from surface electromyography signals based on the SE-DenseNet network.","authors":"Ying Xiang, Wei Zheng, Jiajia Tang, You Dong, Yuhao Pang","doi":"10.1515/bmt-2024-0282","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>In recent years, significant progress has been made in the research of gesture recognition using surface electromyography (sEMG) signals based on machine learning and deep learning techniques. The main motivation for sEMG gesture recognition research is to provide more natural, convenient, and personalized human-computer interaction, which makes research in this field have considerable application prospects in rehabilitation technology. However, the existing gesture recognition algorithms still need to be further improved in terms of global feature capture, model computational complexity, and generalizability.</p><p><strong>Methods: </strong>This paper proposes a fusion model of Squeeze-and-Excitation Networks (SE) and DenseNet, inserting attention mechanism between DenseBlock and Transition to focus on the most important information, improving feature representation ability, and effectively solving the problem of gradient vanishing.</p><p><strong>Results: </strong>This proposed method was tested on the electromyographic gesture datasets NinaPro DB2 and DB4, achieving accuracies of 85.93 and 82.39 % respectively. Through ablation experiments, it was found that the method based on DenseNet-101 as the backbone model produced the best results.</p><p><strong>Conclusions: </strong>Compared with existing models, this proposed method has better robustness and generalizability in gesture recognition, providing new ideas for the development of sEMG signal gesture recognition applications in the future.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedizinische Technik. Biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmt-2024-0282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: In recent years, significant progress has been made in the research of gesture recognition using surface electromyography (sEMG) signals based on machine learning and deep learning techniques. The main motivation for sEMG gesture recognition research is to provide more natural, convenient, and personalized human-computer interaction, which makes research in this field have considerable application prospects in rehabilitation technology. However, the existing gesture recognition algorithms still need to be further improved in terms of global feature capture, model computational complexity, and generalizability.

Methods: This paper proposes a fusion model of Squeeze-and-Excitation Networks (SE) and DenseNet, inserting attention mechanism between DenseBlock and Transition to focus on the most important information, improving feature representation ability, and effectively solving the problem of gradient vanishing.

Results: This proposed method was tested on the electromyographic gesture datasets NinaPro DB2 and DB4, achieving accuracies of 85.93 and 82.39 % respectively. Through ablation experiments, it was found that the method based on DenseNet-101 as the backbone model produced the best results.

Conclusions: Compared with existing models, this proposed method has better robustness and generalizability in gesture recognition, providing new ideas for the development of sEMG signal gesture recognition applications in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gesture recognition from surface electromyography signals based on the SE-DenseNet network. Wear investigation of implant-supported upper removable prothesis with electroplated gold or PEKK secondary crowns. Integration of neuromuscular control for multidirectional horizontal planar reaching movements in a portable upper limb exoskeleton for enhanced stroke rehabilitation. Empirical analysis on retinal segmentation using PSO-based thresholding in diabetic retinopathy grading. An exploratory study of pilot EEG features during the climb and descent phases of flight.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1