{"title":"Scanning Thermal Microscopy Method for Self-Heating in Nonlinear Devices and Application to Filamentary Resistive Random-Access Memory","authors":"Nele Harnack, Sophie Rodehutskors, Bernd Gotsmann","doi":"10.1021/acsnano.4c12784","DOIUrl":null,"url":null,"abstract":"Devices with a highly nonlinear resistance-voltage relationship are candidates for neuromorphic computing, which can be achieved by highly temperature dependent processes like ion migration. To explore the thermal properties of such devices, Scanning Thermal Microscopy (SThM) can be employed. However, due to the nonlinearity, the high resolution and quantitative method of AC-modulated SThM cannot readily be used. To this end, an extended nonequilibrium scheme for temperature measurement using SThM is proposed, with which the self-heating of nonlinear devices is studied without the need for calibrating the tip–sample contact for a specific material combination, geometry or roughness. Both a DC and an AC voltage are applied to the device, triggering a periodic temperature rise, which enables the simultaneous calculation of the tip–sample thermal resistance and the device temperature rise. The method is applied to HfO<sub>2</sub>-based RRAM devices, in which the kinetic processes of filamentary switching are governed by temperature. We image temperature and propagation of thermal waves and extract properties like the number of current filaments, thermal confinement and thermal cross-talk.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"27 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12784","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Devices with a highly nonlinear resistance-voltage relationship are candidates for neuromorphic computing, which can be achieved by highly temperature dependent processes like ion migration. To explore the thermal properties of such devices, Scanning Thermal Microscopy (SThM) can be employed. However, due to the nonlinearity, the high resolution and quantitative method of AC-modulated SThM cannot readily be used. To this end, an extended nonequilibrium scheme for temperature measurement using SThM is proposed, with which the self-heating of nonlinear devices is studied without the need for calibrating the tip–sample contact for a specific material combination, geometry or roughness. Both a DC and an AC voltage are applied to the device, triggering a periodic temperature rise, which enables the simultaneous calculation of the tip–sample thermal resistance and the device temperature rise. The method is applied to HfO2-based RRAM devices, in which the kinetic processes of filamentary switching are governed by temperature. We image temperature and propagation of thermal waves and extract properties like the number of current filaments, thermal confinement and thermal cross-talk.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.