Shihan Hong, Yiwei Xie, Mingming Tan, Yiming Li, Mingfei Ding, Long Zhang, Zejie Yu, Ke Wang, Andrew D. Ellis, Daoxin Dai
{"title":"High-Efficiency On-Chip Optical Phase Conjugation Using a Single Ultralow-Loss Silicon Photonic Waveguide","authors":"Shihan Hong, Yiwei Xie, Mingming Tan, Yiming Li, Mingfei Ding, Long Zhang, Zejie Yu, Ke Wang, Andrew D. Ellis, Daoxin Dai","doi":"10.1021/acsphotonics.4c02298","DOIUrl":null,"url":null,"abstract":"Optical phase conjugation (OPC) is a pivotal all-optical technique aimed at enhancing the received signal quality by compensating for nonlinear distortions. Integrating the OPC into a CMOS-compatible, highly nonlinear silicon photonic chip holds promise for developing fully integrated transceivers with a compact footprint, low loss, and minimal power consumption. Despite its potential, silicon-based OPC demonstrations have been limited, primarily due to challenges, such as inefficient conjugation and significant losses. In this work, we demonstrate an effective OPC technique utilizing a single passive silicon photonic waveguide spiral. This silicon photonic waveguide is meticulously designed with an optimal cross-section to achieve an ultralow loss and high conversion efficiency. The silicon photonic waveguide spiral was fabricated via standard multiproject-wafer processes, and the measured result shows an ultralow loss of 0.25 dB/cm and a high conversion efficiency of −5 dB, marking the <i>highest</i> conversion efficiency reported for passive silicon photonic waveguides to date. The experimentally demonstrated OPC significantly enhances idler generation, resulting in a 3-dB improvement in launched signal power within a 160 Gbit/s 16-QAM transmission system without the need for dispersion compensation for over an 80-km transmission distance.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"33 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c02298","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optical phase conjugation (OPC) is a pivotal all-optical technique aimed at enhancing the received signal quality by compensating for nonlinear distortions. Integrating the OPC into a CMOS-compatible, highly nonlinear silicon photonic chip holds promise for developing fully integrated transceivers with a compact footprint, low loss, and minimal power consumption. Despite its potential, silicon-based OPC demonstrations have been limited, primarily due to challenges, such as inefficient conjugation and significant losses. In this work, we demonstrate an effective OPC technique utilizing a single passive silicon photonic waveguide spiral. This silicon photonic waveguide is meticulously designed with an optimal cross-section to achieve an ultralow loss and high conversion efficiency. The silicon photonic waveguide spiral was fabricated via standard multiproject-wafer processes, and the measured result shows an ultralow loss of 0.25 dB/cm and a high conversion efficiency of −5 dB, marking the highest conversion efficiency reported for passive silicon photonic waveguides to date. The experimentally demonstrated OPC significantly enhances idler generation, resulting in a 3-dB improvement in launched signal power within a 160 Gbit/s 16-QAM transmission system without the need for dispersion compensation for over an 80-km transmission distance.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.