Encapsulating Polyoxometalates inside Single-Walled Carbon Nanotubes for Efficient Solar-Driven Interfacial Evaporation

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-29 DOI:10.1002/adfm.202424565
Ziwei Cui, Jianfei Wu, Chengxu Zhou, Shiyan Ai, Hui Zhou, Fangyuan Kang, Qing Huang, Lixing Kang, Qichun Zhang, Dan Tian
{"title":"Encapsulating Polyoxometalates inside Single-Walled Carbon Nanotubes for Efficient Solar-Driven Interfacial Evaporation","authors":"Ziwei Cui, Jianfei Wu, Chengxu Zhou, Shiyan Ai, Hui Zhou, Fangyuan Kang, Qing Huang, Lixing Kang, Qichun Zhang, Dan Tian","doi":"10.1002/adfm.202424565","DOIUrl":null,"url":null,"abstract":"Polyoxometalates (POMs) display great potential for application in the photothermal field. However, the high water-solubility of POMs restricts their use for solar-driven interfacial evaporation. Therefore, controlling the stability of POMs and fully utilizing their photothermal characteristics is a challenge. Hence, a strategy is proposed through confining POMs with single-walled carbon nanotubes (SWCNTs), which serve as a photothermal layer of a metal-organic frameworks-modified wood evaporator for solar steam generation. POMs are effectively protected by SWCNTs, and concurrently narrow the bandgap of SWCNTs to increase light absorption. Furthermore, the molecular dynamics simulations indicate that the metal-organic frameworks in wood substrate can lower the enthalpy of evaporation by regulating microenvironment of hydrogen bonds. With this ingenious design, the evaporation rate reaches 2.53 kg m<sup>−2</sup> h<sup>−1</sup> under 1 sun, which exceeds most wood-based evaporators. Meanwhile, the evaporator also exhibits good purification performance for seawater and wastewater. This work provides precise regulation from the molecular level, and can be extended to create more efficient solar evaporators.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"20 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202424565","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyoxometalates (POMs) display great potential for application in the photothermal field. However, the high water-solubility of POMs restricts their use for solar-driven interfacial evaporation. Therefore, controlling the stability of POMs and fully utilizing their photothermal characteristics is a challenge. Hence, a strategy is proposed through confining POMs with single-walled carbon nanotubes (SWCNTs), which serve as a photothermal layer of a metal-organic frameworks-modified wood evaporator for solar steam generation. POMs are effectively protected by SWCNTs, and concurrently narrow the bandgap of SWCNTs to increase light absorption. Furthermore, the molecular dynamics simulations indicate that the metal-organic frameworks in wood substrate can lower the enthalpy of evaporation by regulating microenvironment of hydrogen bonds. With this ingenious design, the evaporation rate reaches 2.53 kg m−2 h−1 under 1 sun, which exceeds most wood-based evaporators. Meanwhile, the evaporator also exhibits good purification performance for seawater and wastewater. This work provides precise regulation from the molecular level, and can be extended to create more efficient solar evaporators.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Using Recycled Materials in a Novel Dual Binder System for Hard Carbon Anodes: Closing the Loop Toward Sustainable Li-/Na-ion Batteries Morphologically and Functionally Tunable Nanostructures Self-Assembled from Azopyridine-Containing Block Copolymers Mitigating Face-Sharing Octahedral Impurity Phases for Efficient FA-Based Perovskite Photovoltaics Functional Groups-Dependent Tp-Based COF/MgIn2S4 S-Scheme Heterojunction for Photocatalytic Hydrogen Evolution Body-Coupled Multifunctional Human-Machine Interfaces with Double Spiral Electrode Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1