Hanfeng Liu, Baochao Zheng, Xingtao Wang, Weihua Ning, Li Wan, Yong Wang, Tiantian Liu
{"title":"Mitigating Face-Sharing Octahedral Impurity Phases for Efficient FA-Based Perovskite Photovoltaics","authors":"Hanfeng Liu, Baochao Zheng, Xingtao Wang, Weihua Ning, Li Wan, Yong Wang, Tiantian Liu","doi":"10.1002/adfm.202425620","DOIUrl":null,"url":null,"abstract":"Formamidinium (FA) based perovskites have emerged as one of the most promising light-absorber layers for both single-junction and advanced top-cell tandem photovoltaics, owing to their precisely engineered electronic bandgap and exceptional stability. However, because of the mismatch FA cation and intricate crystallization of FA-based perovskite, the formation of an impurity phase is inevitable, which reduces efficiency and stability. Herein, a N-Phenyl-bis(trifluoromethanesulfonimide) (NPTFSI)-assisted crystallization method is presented to mitigate the formation of impurity phase, i.e., face-sharing octahedra, and achieve phase pure and stable FA-based perovskite. Comprehensive characterization shows that the addition of NPTFSI increases the formation energy of face-sharing octahedra while reducing the formation energy of corner-sharing. This effectively suppresses the impurity phase in the FA-based perovskite films. Suppressing these face-sharing octahedral impurity phases not only enhances the stability of perovskite films under heating or humidity conditions but also improves the carrier dynamics. Finally, the champion devices deliver a significantly enhanced efficiency from 23.23% to 25.74%. Moreover, these PSCs exhibit excellent stability: retain 96% of their initial efficiency after over 500 h maximum power point test.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"31 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202425620","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Formamidinium (FA) based perovskites have emerged as one of the most promising light-absorber layers for both single-junction and advanced top-cell tandem photovoltaics, owing to their precisely engineered electronic bandgap and exceptional stability. However, because of the mismatch FA cation and intricate crystallization of FA-based perovskite, the formation of an impurity phase is inevitable, which reduces efficiency and stability. Herein, a N-Phenyl-bis(trifluoromethanesulfonimide) (NPTFSI)-assisted crystallization method is presented to mitigate the formation of impurity phase, i.e., face-sharing octahedra, and achieve phase pure and stable FA-based perovskite. Comprehensive characterization shows that the addition of NPTFSI increases the formation energy of face-sharing octahedra while reducing the formation energy of corner-sharing. This effectively suppresses the impurity phase in the FA-based perovskite films. Suppressing these face-sharing octahedral impurity phases not only enhances the stability of perovskite films under heating or humidity conditions but also improves the carrier dynamics. Finally, the champion devices deliver a significantly enhanced efficiency from 23.23% to 25.74%. Moreover, these PSCs exhibit excellent stability: retain 96% of their initial efficiency after over 500 h maximum power point test.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.