From Structure to Function: Isatin Derivatives as a Promising Class of Antiviral Agents.

IF 3 4区 医学 Q2 PHARMACOLOGY & PHARMACY Current drug targets Pub Date : 2025-01-28 DOI:10.2174/0113894501352560250115054156
Anshul Jamwal, Shagun Sharma, V K Kapoor, Raveen Chauhan, Kamal Dua, Vikrant Dalwal, Akshay Kumar, Parteek Prasher, Poonam Negi
{"title":"From Structure to Function: Isatin Derivatives as a Promising Class of Antiviral Agents.","authors":"Anshul Jamwal, Shagun Sharma, V K Kapoor, Raveen Chauhan, Kamal Dua, Vikrant Dalwal, Akshay Kumar, Parteek Prasher, Poonam Negi","doi":"10.2174/0113894501352560250115054156","DOIUrl":null,"url":null,"abstract":"<p><p>A range of heterocyclic compounds, including Isatin (oneH-indole-2, 3-dione) and its by-products, have been shown to represent potential unit blocks in the synthesis of potential medicinal agents. Numerous studies have been carried out on isatin, its synthesis, biological uses, and its chemical composition since when it was discovered. Functionally, these isatin-containing heterocycles have demonstrated antibacterial, antidiabetic, antiviral, antitubercular, and anticancer properties, among many others. In vitro and In vivo efficaciousness of several Isatin moieties has been assessed in recent years based on their antimicrobial qualities. Isatin has shown great promise as a flexible heterocycle in the realm of drug development in recent years. Many viruses have caused extensive epidemics during the last 50 years, which have had detrimental effects on social, economic, and health conditions. The current unprecedented SARS-CoV-2 epidemic necessitates intensive research into the development of potent antiviral medications. It has been shown that Isatin, a flexible heterocycle, has a great deal of potential for drug development. Appropriately functionalized Isatin compounds have shown noteworthy and extensive antiviral activities throughout the last fifty years. The goal of this study is to gather all known data on Isatin derivatives' antiviral activity, emphasizing their structure-activity correlations as well as research on mechanistic and molecular modelling. We think that the scientific community will find this review to be a useful tool in the development of more efficient and powerful antiviral treatments based on Isatin scaffolds.</p>","PeriodicalId":10805,"journal":{"name":"Current drug targets","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113894501352560250115054156","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

A range of heterocyclic compounds, including Isatin (oneH-indole-2, 3-dione) and its by-products, have been shown to represent potential unit blocks in the synthesis of potential medicinal agents. Numerous studies have been carried out on isatin, its synthesis, biological uses, and its chemical composition since when it was discovered. Functionally, these isatin-containing heterocycles have demonstrated antibacterial, antidiabetic, antiviral, antitubercular, and anticancer properties, among many others. In vitro and In vivo efficaciousness of several Isatin moieties has been assessed in recent years based on their antimicrobial qualities. Isatin has shown great promise as a flexible heterocycle in the realm of drug development in recent years. Many viruses have caused extensive epidemics during the last 50 years, which have had detrimental effects on social, economic, and health conditions. The current unprecedented SARS-CoV-2 epidemic necessitates intensive research into the development of potent antiviral medications. It has been shown that Isatin, a flexible heterocycle, has a great deal of potential for drug development. Appropriately functionalized Isatin compounds have shown noteworthy and extensive antiviral activities throughout the last fifty years. The goal of this study is to gather all known data on Isatin derivatives' antiviral activity, emphasizing their structure-activity correlations as well as research on mechanistic and molecular modelling. We think that the scientific community will find this review to be a useful tool in the development of more efficient and powerful antiviral treatments based on Isatin scaffolds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current drug targets
Current drug targets 医学-药学
CiteScore
6.20
自引率
0.00%
发文量
127
审稿时长
3-8 weeks
期刊介绍: Current Drug Targets aims to cover the latest and most outstanding developments on the medicinal chemistry and pharmacology of molecular drug targets e.g. disease specific proteins, receptors, enzymes, genes. Current Drug Targets publishes guest edited thematic issues written by leaders in the field covering a range of current topics of drug targets. The journal also accepts for publication mini- & full-length review articles and drug clinical trial studies. As the discovery, identification, characterization and validation of novel human drug targets for drug discovery continues to grow; this journal is essential reading for all pharmaceutical scientists involved in drug discovery and development.
期刊最新文献
Emerging Carbon Dots Nanomaterials for Ovarian Cancer Diagnosis and Therapy. Targeting Neurodegeneration: The Emerging Role of Hybrid Drugs. Assessing Anti-Acne Potentials Via in-vitro, Ex-vivo, and in-vivo Models: A Comprehensive Approach. From Structure to Function: Isatin Derivatives as a Promising Class of Antiviral Agents. MT1JP: A Pivotal Tumor-Suppressing LncRNA and its Role in Cancer Progression and Therapeutic Potential.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1