Md Rayid Hasan Mojumder, Seongchan Kim, Cunjiang Yu
{"title":"Soft Artificial Synapse Electronics.","authors":"Md Rayid Hasan Mojumder, Seongchan Kim, Cunjiang Yu","doi":"10.34133/research.0582","DOIUrl":null,"url":null,"abstract":"<p><p>Soft electronics, known for their bendable, stretchable, and flexible properties, are revolutionizing fields such as biomedical sensing, consumer electronics, and robotics. A primary challenge in this domain is achieving low power consumption, often hampered by the limitations of the conventional von Neumann architecture. In response, the development of soft artificial synapses (SASs) has gained substantial attention. These synapses seek to replicate the signal transmission properties of biological synapses, offering an innovative solution to this challenge. This review explores the materials and device architectures integral to SAS fabrication, emphasizing flexibility and stability under mechanical deformation. Various architectures, including floating-gate dielectric, ferroelectric-gate dielectric, and electrolyte-gate dielectric, are analyzed for effective weight control in SASs. The utilization of organic and low-dimensional materials is highlighted, showcasing their plasticity and energy-efficient operation. Furthermore, the paper investigates the integration of functionality into SASs, particularly focusing on devices that autonomously sense external stimuli. Functionalized SASs, capable of recognizing optical, mechanical, chemical, olfactory, and auditory cues, demonstrate promising applications in computing and sensing. A detailed examination of photo-functionalized, tactile-functionalized, and chemoreception-functionalized SASs reveals their potential in image recognition, tactile sensing, and chemosensory applications, respectively. This study highlights that SASs and functionalized SAS devices hold transformative potential for bioelectronics and sensing for soft-robotics applications; however, further research is necessary to address scalability, long-time stability, and utilizing functionalized SASs for prosthetics and in vivo applications through clinical adoption. By providing a comprehensive overview, this paper contributes to the understanding of SASs, bridging research gaps and paving the way toward transformative developments in soft electronics, biomimicking and biointegrated synapse devices, and integrated systems.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0582"},"PeriodicalIF":11.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772661/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0582","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Soft electronics, known for their bendable, stretchable, and flexible properties, are revolutionizing fields such as biomedical sensing, consumer electronics, and robotics. A primary challenge in this domain is achieving low power consumption, often hampered by the limitations of the conventional von Neumann architecture. In response, the development of soft artificial synapses (SASs) has gained substantial attention. These synapses seek to replicate the signal transmission properties of biological synapses, offering an innovative solution to this challenge. This review explores the materials and device architectures integral to SAS fabrication, emphasizing flexibility and stability under mechanical deformation. Various architectures, including floating-gate dielectric, ferroelectric-gate dielectric, and electrolyte-gate dielectric, are analyzed for effective weight control in SASs. The utilization of organic and low-dimensional materials is highlighted, showcasing their plasticity and energy-efficient operation. Furthermore, the paper investigates the integration of functionality into SASs, particularly focusing on devices that autonomously sense external stimuli. Functionalized SASs, capable of recognizing optical, mechanical, chemical, olfactory, and auditory cues, demonstrate promising applications in computing and sensing. A detailed examination of photo-functionalized, tactile-functionalized, and chemoreception-functionalized SASs reveals their potential in image recognition, tactile sensing, and chemosensory applications, respectively. This study highlights that SASs and functionalized SAS devices hold transformative potential for bioelectronics and sensing for soft-robotics applications; however, further research is necessary to address scalability, long-time stability, and utilizing functionalized SASs for prosthetics and in vivo applications through clinical adoption. By providing a comprehensive overview, this paper contributes to the understanding of SASs, bridging research gaps and paving the way toward transformative developments in soft electronics, biomimicking and biointegrated synapse devices, and integrated systems.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.