{"title":"Skatole Alleviates Osteoarthritis by Reprogramming Macrophage Polarization and Protecting Chondrocytes.","authors":"Weiyun Wang, Yaru Chu, Yunkun Lu, Jie Xu, Weixuan Zhao, Zhuo Liang, Xueqiang Guo, Lingling Xi, Tao Han, Yaping Shen, Wenjuan Song, Yanhua Tang, Mengnan Wen, Zhuang Qian, Lei Wang, Zhenlin Fan, Guangdong Zhou, Wenjie Ren","doi":"10.34133/research.0604","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is the most prevalent joint disease, yet effective disease-modifying OA drugs (DMOADs) remain elusive. Targeting macrophage polarization has emerged as a promising avenue for OA treatment. This study identified skatole through high-throughput screening as an efficient modulator of macrophage polarization. In vivo experiments demonstrated that skatole administration markedly reduced synovitis and cartilage damage in both destabilization of medial meniscus (DMM)-induced OA mice and monosodium iodoacetate (MIA)-induced OA rats. Mechanistically, skatole activated signal transducer and activator of transcription 6 (Stat6) signaling, promoting M2 macrophage polarization, while inhibiting nuclear factor-κB (NFκB) and mitogen-activated protein kinase (MAPK) signaling pathways to suppress M1 polarization. RNA-sequencing analysis, targeted metabolomics, and mitochondrial stress tests further revealed that skatole treatment shifted macrophages toward oxidative phosphorylation for energy production. Additionally, it up-regulated genes associated with glutathione metabolism and reactive oxygen species (ROS) pathways, reducing intracellular ROS production. The CUT&Tag assay results indicated that the downstream transcription factor p65 of NFκB can directly bind to gene loci related to inflammation, oxidative phosphorylation, and glutathione metabolism, thereby modulating gene expression. This regulatory process is inhibited by skatole. At the chondrocyte level, conditional medium from skatole-treated M1 macrophages balanced anabolism and catabolism in mouse chondrocytes and inhibited apoptosis. In IL1β-treated chondrocytes, skatole suppressed inflammation and catabolism without affecting apoptosis or anabolism. Overall, skatole maintains immune microenvironment homeostasis by modulating macrophage polarization in joints and preserves cartilage function by balancing chondrocyte anabolism and catabolism, effectively alleviating OA. These findings suggest skatole's potential as a DMOAD.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0604"},"PeriodicalIF":11.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788598/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0604","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoarthritis (OA) is the most prevalent joint disease, yet effective disease-modifying OA drugs (DMOADs) remain elusive. Targeting macrophage polarization has emerged as a promising avenue for OA treatment. This study identified skatole through high-throughput screening as an efficient modulator of macrophage polarization. In vivo experiments demonstrated that skatole administration markedly reduced synovitis and cartilage damage in both destabilization of medial meniscus (DMM)-induced OA mice and monosodium iodoacetate (MIA)-induced OA rats. Mechanistically, skatole activated signal transducer and activator of transcription 6 (Stat6) signaling, promoting M2 macrophage polarization, while inhibiting nuclear factor-κB (NFκB) and mitogen-activated protein kinase (MAPK) signaling pathways to suppress M1 polarization. RNA-sequencing analysis, targeted metabolomics, and mitochondrial stress tests further revealed that skatole treatment shifted macrophages toward oxidative phosphorylation for energy production. Additionally, it up-regulated genes associated with glutathione metabolism and reactive oxygen species (ROS) pathways, reducing intracellular ROS production. The CUT&Tag assay results indicated that the downstream transcription factor p65 of NFκB can directly bind to gene loci related to inflammation, oxidative phosphorylation, and glutathione metabolism, thereby modulating gene expression. This regulatory process is inhibited by skatole. At the chondrocyte level, conditional medium from skatole-treated M1 macrophages balanced anabolism and catabolism in mouse chondrocytes and inhibited apoptosis. In IL1β-treated chondrocytes, skatole suppressed inflammation and catabolism without affecting apoptosis or anabolism. Overall, skatole maintains immune microenvironment homeostasis by modulating macrophage polarization in joints and preserves cartilage function by balancing chondrocyte anabolism and catabolism, effectively alleviating OA. These findings suggest skatole's potential as a DMOAD.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.