Acoustic Transmitted Decellularized Fish Bladder for Tympanic Membrane Regeneration.

IF 11 1区 综合性期刊 Q1 Multidisciplinary Research Pub Date : 2025-02-05 eCollection Date: 2025-01-01 DOI:10.34133/research.0596
Hong Chen, Hui Zhang, Guangjie Zhu, Long Cao, Chenjie Yu, Maoli Duan, Xiaoyun Qian, Xia Gao, Yuanjin Zhao
{"title":"Acoustic Transmitted Decellularized Fish Bladder for Tympanic Membrane Regeneration.","authors":"Hong Chen, Hui Zhang, Guangjie Zhu, Long Cao, Chenjie Yu, Maoli Duan, Xiaoyun Qian, Xia Gao, Yuanjin Zhao","doi":"10.34133/research.0596","DOIUrl":null,"url":null,"abstract":"<p><p>Developing advanced tissue-engineered membranes with biocompatibility, suitable mechanical qualities, and anti-fibrotic and anti-inflammatory actions is important for tympanic membrane (TM) repair. Here, we present a novel acoustically transmitted decellularized fish swim bladder (DFB) loaded with mesenchymal stem cells (DFB@MSCs) for TM perforation (TMP) repair. The DFB scaffolds are obtained by removing the cellular components from the original FB, which retains the collagen composition that favors cell proliferation. Benefitting from their spatially porous structures and excellent mechanical properties, the DFB scaffolds can provide a suitable microenvironment and mechanical support for cell growth and tissue regeneration. In addition, by loading mesenchymal stem cells on the DFB scaffolds, the resultant DFB@MSCs system exhibits remarkable anti-fibrotic and anti-inflammatory effects, together with the ability to promote cell migration and angiogenesis. In vivo experiments confirm that the prepared DFB@MSCs scaffolds can not only alleviate inflammatory response caused by TMP but also promote new vessel formation, TM repair, and hearing improvement. These features indicate that our proposed DFB@MSCs stent is a prospective tool for the clinical repair of TM.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0596"},"PeriodicalIF":11.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794765/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0596","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Developing advanced tissue-engineered membranes with biocompatibility, suitable mechanical qualities, and anti-fibrotic and anti-inflammatory actions is important for tympanic membrane (TM) repair. Here, we present a novel acoustically transmitted decellularized fish swim bladder (DFB) loaded with mesenchymal stem cells (DFB@MSCs) for TM perforation (TMP) repair. The DFB scaffolds are obtained by removing the cellular components from the original FB, which retains the collagen composition that favors cell proliferation. Benefitting from their spatially porous structures and excellent mechanical properties, the DFB scaffolds can provide a suitable microenvironment and mechanical support for cell growth and tissue regeneration. In addition, by loading mesenchymal stem cells on the DFB scaffolds, the resultant DFB@MSCs system exhibits remarkable anti-fibrotic and anti-inflammatory effects, together with the ability to promote cell migration and angiogenesis. In vivo experiments confirm that the prepared DFB@MSCs scaffolds can not only alleviate inflammatory response caused by TMP but also promote new vessel formation, TM repair, and hearing improvement. These features indicate that our proposed DFB@MSCs stent is a prospective tool for the clinical repair of TM.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
期刊最新文献
Novel lncRNA LncMSTRG.11341.25 Promotes Osteogenic Differentiation of Human Bone Marrow Stem Cells via the miR-939-5p/PAX8 Axis. Acoustic Transmitted Decellularized Fish Bladder for Tympanic Membrane Regeneration. Long-Range Azimuthal Correlation, Entanglement, and Bell Inequality Violation by Spinning Gluons at the Large Hadron Collider. Inhibition of Mitochondrial Fission Reverses Simulated Microgravity-Induced Osteoblast Dysfunction by Enhancing Mechanotransduction and Epigenetic Modification. Skatole Alleviates Osteoarthritis by Reprogramming Macrophage Polarization and Protecting Chondrocytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1