Neutrophil-Leishmania infantum Interaction Induces Neutrophil Extracellular Traps, DAMPs, and Inflammatory Molecule Release.

IF 4 2区 医学 Q2 CHEMISTRY, MEDICINAL ACS Infectious Diseases Pub Date : 2025-01-31 DOI:10.1021/acsinfecdis.4c00820
Paulo Ricardo Porfírio do Nascimento, Carolina Oliveira Mendes-Aguiar, Ingryd Câmara Morais, João Firmino Rodrigues Neto, Mary E Wilson, Selma Maria Bezerra Jerônimo
{"title":"Neutrophil-<i>Leishmania infantum</i> Interaction Induces Neutrophil Extracellular Traps, DAMPs, and Inflammatory Molecule Release.","authors":"Paulo Ricardo Porfírio do Nascimento, Carolina Oliveira Mendes-Aguiar, Ingryd Câmara Morais, João Firmino Rodrigues Neto, Mary E Wilson, Selma Maria Bezerra Jerônimo","doi":"10.1021/acsinfecdis.4c00820","DOIUrl":null,"url":null,"abstract":"<p><p>Neutrophils, the first cells to arrive at infection sites, release neutrophil extracellular traps (NETs) comprising nuclear and/or mitochondrial DNA webs decorated with proteins. Similar to other parasites, <i>Leishmania infantum</i> induces NET extrusion. However, our understanding of NET formation and neutrophil fate after NET release in a Leishmania infection context is limited. Our study aimed to determine the DNA origin of the NET scaffolds released by human neutrophils in response to chemical or <i>L. infantum</i> stimulation. Neutrophils were incubated with PMA, PHA, LPS, or <i>L. infantum</i>, followed by DNA and elastase activity quantification; additionally, we evaluated the source of DNA that composes NETs. Neutrophil viability was evaluated by annexin-V/7AAd labeling. Expression of IL6, TNFA, IL10, CXCL1, CXCL8, and FPR1 in response to the <i>L. infantum</i> interaction was assessed. Neutrophils incubated with chemicals or <i>L. infantum</i> released NETs. However, neutrophils stimulated by the chemicals showed lower viability after 1 h in comparison to neutrophils incubated with parasites. NETs from chemically stimulated neutrophils were mainly composed of nuclear DNA. Conversely, the NET induced by the parasites was of mitochondrial DNA origin and had no leishmanicidal activity. After 4 h of parasite stimulation, neutrophils peak the expression of genes such as IL6, TNFA, CXCL1, CXCL8, and FPR1. Our study demonstrates that neutrophils produce NETs after chemical or <i>L. infantum</i> exposure. Although they are not toxic to the parasite, NETs are released as danger signals. These findings support the role of neutrophils in releasing signaling molecules, which influence the inflammatory environment in which the infectious process occurs.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00820","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Neutrophils, the first cells to arrive at infection sites, release neutrophil extracellular traps (NETs) comprising nuclear and/or mitochondrial DNA webs decorated with proteins. Similar to other parasites, Leishmania infantum induces NET extrusion. However, our understanding of NET formation and neutrophil fate after NET release in a Leishmania infection context is limited. Our study aimed to determine the DNA origin of the NET scaffolds released by human neutrophils in response to chemical or L. infantum stimulation. Neutrophils were incubated with PMA, PHA, LPS, or L. infantum, followed by DNA and elastase activity quantification; additionally, we evaluated the source of DNA that composes NETs. Neutrophil viability was evaluated by annexin-V/7AAd labeling. Expression of IL6, TNFA, IL10, CXCL1, CXCL8, and FPR1 in response to the L. infantum interaction was assessed. Neutrophils incubated with chemicals or L. infantum released NETs. However, neutrophils stimulated by the chemicals showed lower viability after 1 h in comparison to neutrophils incubated with parasites. NETs from chemically stimulated neutrophils were mainly composed of nuclear DNA. Conversely, the NET induced by the parasites was of mitochondrial DNA origin and had no leishmanicidal activity. After 4 h of parasite stimulation, neutrophils peak the expression of genes such as IL6, TNFA, CXCL1, CXCL8, and FPR1. Our study demonstrates that neutrophils produce NETs after chemical or L. infantum exposure. Although they are not toxic to the parasite, NETs are released as danger signals. These findings support the role of neutrophils in releasing signaling molecules, which influence the inflammatory environment in which the infectious process occurs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
期刊最新文献
Neutrophil-Leishmania infantum Interaction Induces Neutrophil Extracellular Traps, DAMPs, and Inflammatory Molecule Release. Ten Years of ACS Infectious Diseases - A Celebration of Excellence. Infectious Diseases Chemical "Cookbooks": Celebrating Women's Authorship in ACS Infectious Diseases. Role of the Mobile Active Site Flap in IMP Dehydrogenase Inhibitor Binding. Decoding the Role of Antimicrobial Peptides in the Fight against Mycobacterium tuberculosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1