{"title":"Elucidation of Postfusion Structures of the Measles Virus F Protein for the Structure-Based Design of Fusion Inhibitors.","authors":"Aoi Takahara, Toru Nakatsu, Kazushige Hirata, Hironori Hayashi, Kumi Kawaji, Keisuke Aoki, Shinsuke Inuki, Hiroaki Ohno, Hiroaki Kato, Eiichi Kodama, Shinya Oishi","doi":"10.1021/acs.jmedchem.4c02337","DOIUrl":null,"url":null,"abstract":"<p><p>Measles is a highly infectious disease and remains a major cause of childhood mortality worldwide. In some cases, the measles virus (MV) induces subacute sclerosing panencephalitis within several years of the acute infection. The infection of the target cells by MV is mediated by the F protein, in which two heptad repeat regions, HR1 and HR2, form a six-helix bundle before membrane fusion. We previously reported anti-MV peptides, which were designed from the HR region of the MV F protein. Here, we characterized the essential interactions between the HR1 and HR2 regions on the postfusion six-helix bundles of synthetic HR1 and HR2 peptides by crystallographic studies. Based on the crystal structures, we identified the minimal α-helix sequence for antiviral activity. Additionally, optimizing HR2 peptides by introducing α-helix-inducible motifs and maintaining key hydrogen bond networks at the N- and C-terminal regions led to the identification of highly potent antiviral peptides.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02337","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Measles is a highly infectious disease and remains a major cause of childhood mortality worldwide. In some cases, the measles virus (MV) induces subacute sclerosing panencephalitis within several years of the acute infection. The infection of the target cells by MV is mediated by the F protein, in which two heptad repeat regions, HR1 and HR2, form a six-helix bundle before membrane fusion. We previously reported anti-MV peptides, which were designed from the HR region of the MV F protein. Here, we characterized the essential interactions between the HR1 and HR2 regions on the postfusion six-helix bundles of synthetic HR1 and HR2 peptides by crystallographic studies. Based on the crystal structures, we identified the minimal α-helix sequence for antiviral activity. Additionally, optimizing HR2 peptides by introducing α-helix-inducible motifs and maintaining key hydrogen bond networks at the N- and C-terminal regions led to the identification of highly potent antiviral peptides.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.