Optimization of Single Relaxin B-Chain Peptide Leads to the Identification of R2R01, a Potent, Long-Acting RXFP1 Agonist for Cardiovascular and Renal Diseases.

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL Journal of Medicinal Chemistry Pub Date : 2025-01-31 DOI:10.1021/acs.jmedchem.4c03085
Sergio Mallart, Raffaele Ingenito, Paola Magotti, Alberto Bresciani, Annalise Di Marco, Simone Esposito, Edith Monteagudo, Fulvia Caretti, Laura Orsatti, Alessia Santoprete, Daniela Roversi, Federica Tucci, Maria Veneziano, Denis Brasseur, Xavier Chénedé, Alain Corbier, Laurence Gauzy-Lazo, Vincent Gervat, Frank Marguet, Claire Minoletti, Olivier Pasquier, Bruno Poirier, Aurélien Azam, Bernard Maillère, Elisabetta Bianchi, Philip Janiak, Olivier Duclos, Stephane Illiano
{"title":"Optimization of Single Relaxin B-Chain Peptide Leads to the Identification of R2R01, a Potent, Long-Acting RXFP1 Agonist for Cardiovascular and Renal Diseases.","authors":"Sergio Mallart, Raffaele Ingenito, Paola Magotti, Alberto Bresciani, Annalise Di Marco, Simone Esposito, Edith Monteagudo, Fulvia Caretti, Laura Orsatti, Alessia Santoprete, Daniela Roversi, Federica Tucci, Maria Veneziano, Denis Brasseur, Xavier Chénedé, Alain Corbier, Laurence Gauzy-Lazo, Vincent Gervat, Frank Marguet, Claire Minoletti, Olivier Pasquier, Bruno Poirier, Aurélien Azam, Bernard Maillère, Elisabetta Bianchi, Philip Janiak, Olivier Duclos, Stephane Illiano","doi":"10.1021/acs.jmedchem.4c03085","DOIUrl":null,"url":null,"abstract":"<p><p>Peptide <b>1</b>, a C18 fatty acid-modified single-chain relaxin analogue, was recently identified as a potent, selective, and long-lasting relaxin family peptide receptor 1 (RXFP1) agonist. Further advanced pharmacokinetic profiling of this compound highlighted elevated levels of oxidative metabolism occurring in dogs and mini pigs but only marginally in rats. This study aimed to design long-lasting relaxin analogues with increased stability against metabolic oxidation while securing subnanomolar RXFP1 potency. Key structural elements, including fatty acid chain length, attachment position, and linker structure, were modified to reduce oxidative metabolism and improve pharmacokinetic parameters. Additionally, incorporating α-methyl lysine (Mly) at position 30, alongside other selective sequence mutations, resulted in several analogues with subnanomolar RXFP1 potency and improved duration of action compared to <b>1</b>. Compound <b>21</b> (R2R01) was then selected as a candidate for an in-depth characterization. It is currently undergoing phase 2 clinical development for renal and cardiovascular diseases.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c03085","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Peptide 1, a C18 fatty acid-modified single-chain relaxin analogue, was recently identified as a potent, selective, and long-lasting relaxin family peptide receptor 1 (RXFP1) agonist. Further advanced pharmacokinetic profiling of this compound highlighted elevated levels of oxidative metabolism occurring in dogs and mini pigs but only marginally in rats. This study aimed to design long-lasting relaxin analogues with increased stability against metabolic oxidation while securing subnanomolar RXFP1 potency. Key structural elements, including fatty acid chain length, attachment position, and linker structure, were modified to reduce oxidative metabolism and improve pharmacokinetic parameters. Additionally, incorporating α-methyl lysine (Mly) at position 30, alongside other selective sequence mutations, resulted in several analogues with subnanomolar RXFP1 potency and improved duration of action compared to 1. Compound 21 (R2R01) was then selected as a candidate for an in-depth characterization. It is currently undergoing phase 2 clinical development for renal and cardiovascular diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
期刊最新文献
Correction to "Discovery, Synthesis, and Evaluation of Novel Dual Inhibitors of a Vascular Endothelial Growth Factor Receptor and Poly(ADP-Ribose) Polymerase for BRCA Wild-Type Breast Cancer Therapy". Discovery of Pyrrolopyrazine Carboxamide Derivatives as Potent and Selective FGFR2/3 Inhibitors that Overcome Mutant Resistance. Elucidation of Postfusion Structures of the Measles Virus F Protein for the Structure-Based Design of Fusion Inhibitors. Novel Bioorthogonal Theranostic Scaffold Enables on-Target Drug Release and Real Time Monitoring In Vivo. Optimization of Single Relaxin B-Chain Peptide Leads to the Identification of R2R01, a Potent, Long-Acting RXFP1 Agonist for Cardiovascular and Renal Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1