Enabling high-performance multivalent metal-ion batteries: current advances and future prospects.

IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Society Reviews Pub Date : 2025-01-31 DOI:10.1039/d4cs00929k
Asif Mahmood, Zhe Bai, Tan Wang, Yaojie Lei, Shijian Wang, Bing Sun, Hajra Khan, Karim Khan, Kening Sun, Guoxiu Wang
{"title":"Enabling high-performance multivalent metal-ion batteries: current advances and future prospects.","authors":"Asif Mahmood, Zhe Bai, Tan Wang, Yaojie Lei, Shijian Wang, Bing Sun, Hajra Khan, Karim Khan, Kening Sun, Guoxiu Wang","doi":"10.1039/d4cs00929k","DOIUrl":null,"url":null,"abstract":"<p><p>The battery market is primarily dominated by lithium technology, which faces severe challenges because of the low abundance and high cost of lithium metal. In this regard, multivalent metal-ion batteries (MVIBs) enabled by multivalent metal ions (<i>e.g.</i> Zn<sup>2+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Al<sup>3+</sup>, <i>etc.</i>) have received great attention as an alternative to traditional lithium-ion batteries (Li-ion batteries) due to the high abundance and low cost of multivalent metals, high safety and higher volumetric capacities. However, the successful application of these battery chemistries requires careful control over electrode and electrolyte chemistries due to the higher charge density and slower kinetics of multivalent metal ions, structural instability of the electrode materials, and interfacial resistance, <i>etc.</i> This review comprehensively explores the recent advancements in electrode and electrolyte materials as well as separators for MVIBs, highlighting the potential of MVIBs to outperform Li-ion batteries regarding cost, energy density and safety. The review first summarizes the recent progress and fundamental charge storage mechanism in several MVIB chemistries, followed by a summary of major challenges. Then, a thorough account of the recently proposed methodologies is given including progress in anode/cathode design, electrolyte modifications, transition to semi-solid- and solid-state electrolytes (SSEs), modifications in separators as well as a description of advanced characterization tools towards understanding the charge storage mechanism. The review also accounts for the recent trend of using artificial intelligence in battery technology. The review concludes with a discussion on prospects, emphasizing the importance of material innovation and sustainability. Overall, this review provides a detailed overview of the current state and future directions of MVIB technology, underscoring its significance in advancing next-generation energy storage solutions.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cs00929k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The battery market is primarily dominated by lithium technology, which faces severe challenges because of the low abundance and high cost of lithium metal. In this regard, multivalent metal-ion batteries (MVIBs) enabled by multivalent metal ions (e.g. Zn2+, Mg2+, Ca2+, Al3+, etc.) have received great attention as an alternative to traditional lithium-ion batteries (Li-ion batteries) due to the high abundance and low cost of multivalent metals, high safety and higher volumetric capacities. However, the successful application of these battery chemistries requires careful control over electrode and electrolyte chemistries due to the higher charge density and slower kinetics of multivalent metal ions, structural instability of the electrode materials, and interfacial resistance, etc. This review comprehensively explores the recent advancements in electrode and electrolyte materials as well as separators for MVIBs, highlighting the potential of MVIBs to outperform Li-ion batteries regarding cost, energy density and safety. The review first summarizes the recent progress and fundamental charge storage mechanism in several MVIB chemistries, followed by a summary of major challenges. Then, a thorough account of the recently proposed methodologies is given including progress in anode/cathode design, electrolyte modifications, transition to semi-solid- and solid-state electrolytes (SSEs), modifications in separators as well as a description of advanced characterization tools towards understanding the charge storage mechanism. The review also accounts for the recent trend of using artificial intelligence in battery technology. The review concludes with a discussion on prospects, emphasizing the importance of material innovation and sustainability. Overall, this review provides a detailed overview of the current state and future directions of MVIB technology, underscoring its significance in advancing next-generation energy storage solutions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Society Reviews
Chemical Society Reviews 化学-化学综合
CiteScore
80.80
自引率
1.10%
发文量
345
审稿时长
6.0 months
期刊介绍: Chemical Society Reviews is published by: Royal Society of Chemistry. Focus: Review articles on topics of current interest in chemistry; Predecessors: Quarterly Reviews, Chemical Society (1947–1971); Current title: Since 1971; Impact factor: 60.615 (2021); Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences
期刊最新文献
Enabling high-performance multivalent metal-ion batteries: current advances and future prospects. Models and simulations of structural DNA nanotechnology reveal fundamental principles of self-assembly Dynamic regulation of ferroelectric polarization using external stimuli for efficient water splitting and beyond Quantum life science: biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, quantum biology, and quantum biotechnology. Catalytic asymmetric photocycloaddition reactions mediated by enantioselective radical approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1