{"title":"Dioscin pretreatment ameliorates ferroptosis in cardiomyocytes after myocardial infarction via inhibiting endoplasmic reticulum stress.","authors":"Chang Wu, Xueping Shen, Pan Lou, Dongyan Song","doi":"10.1186/s10020-025-01102-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.</p><p><strong>Methods: </strong>Here, we investigated the potential of Dioscin, a natural compound known for its diverse pharmacological properties, in mitigating ferroptosis in cardiomyocytes following MI by targeting ER stress.</p><p><strong>Results: </strong>In animal models subjected to MI, administration of Dioscin notably improved cardiac function, reduced infarct size by approximately 24%, and prevented adverse remodeling, highlighting its therapeutic potential. Through in vitro and in vivo models of MI, we demonstrated that Dioscin treatment significantly attenuates ferroptosis in cardiomyocytes, as evidenced by a decrease in lipid peroxidation by about 19% and preserved mitochondrial integrity. Moreover, Dioscin exerted its protective effects by inhibiting ER stress markers, such as the phosphorylation levels of PERK and eIF2α proteins, and the expression levels of BIP and ATF4 proteins, thus disrupting the ER stress-mediated signaling cascade associated with ferroptosis.</p><p><strong>Conclusion: </strong>Overall, our findings suggested that Dioscin holds promise as a therapeutic agent against post-MI cardiac injury by mitigating ferroptosis via the suppression of ER stress. Further investigations into the precise molecular mechanisms and clinical translation of Dioscin's cardioprotective effects are warranted, offering a potential avenue for novel therapeutic interventions in MI-related cardiac complications.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"32"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780909/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01102-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.
Methods: Here, we investigated the potential of Dioscin, a natural compound known for its diverse pharmacological properties, in mitigating ferroptosis in cardiomyocytes following MI by targeting ER stress.
Results: In animal models subjected to MI, administration of Dioscin notably improved cardiac function, reduced infarct size by approximately 24%, and prevented adverse remodeling, highlighting its therapeutic potential. Through in vitro and in vivo models of MI, we demonstrated that Dioscin treatment significantly attenuates ferroptosis in cardiomyocytes, as evidenced by a decrease in lipid peroxidation by about 19% and preserved mitochondrial integrity. Moreover, Dioscin exerted its protective effects by inhibiting ER stress markers, such as the phosphorylation levels of PERK and eIF2α proteins, and the expression levels of BIP and ATF4 proteins, thus disrupting the ER stress-mediated signaling cascade associated with ferroptosis.
Conclusion: Overall, our findings suggested that Dioscin holds promise as a therapeutic agent against post-MI cardiac injury by mitigating ferroptosis via the suppression of ER stress. Further investigations into the precise molecular mechanisms and clinical translation of Dioscin's cardioprotective effects are warranted, offering a potential avenue for novel therapeutic interventions in MI-related cardiac complications.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.