Rodrigo A Contreras, Marisol Pizarro, Gustavo E Zúñiga, Cristian Valenzuela
{"title":"Hormonal regulation and physiological adjustments of wheat and pea plants under simulated lunar soil conditions.","authors":"Rodrigo A Contreras, Marisol Pizarro, Gustavo E Zúñiga, Cristian Valenzuela","doi":"10.1111/ppl.70097","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the physiological and morphological responses of wheat (Triticum aestivum) and pea (Pisum sativum) grown in a mixture of lunar soil (LS) simulant and organic soil (OS). The experiment compared the growth of both pea and wheat in 100% organic soil (OS) and a 3:2 mixture of OS and LS (OS: LS). Wheat exhibited increased branching and root growth in OS: LS, while pea plants showed enhanced aerial elongation and altered branch morphology. Photochemical efficiency (Fv/Fm) and pigment concentrations were significantly affected, with both pea and wheat showing reduced chlorophyll content in OS: LS. Oxidative stress indicators, such as lipid peroxidation, exhibited higher levels in pea plants than wheat plants, particularly in the OS: LS mixture. Hormonal analysis performed by LC-MS/MS indicated significant increases in abscisic acid (ABA) and its catabolites in both pea and wheat in OS: LS, suggesting an adaptive response to suboptimal conditions. The results highlight species-specific growth strategies, with wheat investing more in root development and pea plants promoting aerial growth. These findings provide important insights into how essential crops could adapt to extraterrestrial soils, contributing to the development of sustainable agricultural practices for space exploration. Future research should focus on optimising crop performance based on species-specific adaptative responses in mixed-soil environments.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70097"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70097","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the physiological and morphological responses of wheat (Triticum aestivum) and pea (Pisum sativum) grown in a mixture of lunar soil (LS) simulant and organic soil (OS). The experiment compared the growth of both pea and wheat in 100% organic soil (OS) and a 3:2 mixture of OS and LS (OS: LS). Wheat exhibited increased branching and root growth in OS: LS, while pea plants showed enhanced aerial elongation and altered branch morphology. Photochemical efficiency (Fv/Fm) and pigment concentrations were significantly affected, with both pea and wheat showing reduced chlorophyll content in OS: LS. Oxidative stress indicators, such as lipid peroxidation, exhibited higher levels in pea plants than wheat plants, particularly in the OS: LS mixture. Hormonal analysis performed by LC-MS/MS indicated significant increases in abscisic acid (ABA) and its catabolites in both pea and wheat in OS: LS, suggesting an adaptive response to suboptimal conditions. The results highlight species-specific growth strategies, with wheat investing more in root development and pea plants promoting aerial growth. These findings provide important insights into how essential crops could adapt to extraterrestrial soils, contributing to the development of sustainable agricultural practices for space exploration. Future research should focus on optimising crop performance based on species-specific adaptative responses in mixed-soil environments.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.