Comparison of Unaided and Aided Visual Acuity in Adults With Down Syndrome.

IF 2.6 3区 医学 Q2 OPHTHALMOLOGY Translational Vision Science & Technology Pub Date : 2025-01-02 DOI:10.1167/tvst.14.1.30
Lauren V Schneider, Jason D Marsack, Ruth E Manny, Heather A Anderson
{"title":"Comparison of Unaided and Aided Visual Acuity in Adults With Down Syndrome.","authors":"Lauren V Schneider, Jason D Marsack, Ruth E Manny, Heather A Anderson","doi":"10.1167/tvst.14.1.30","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Individuals with Down syndrome (DS) have reduced visual acuity (VA), even when wearing refractive correction. The relationship between refractive error and VA in adults with DS is explored.</p><p><strong>Methods: </strong>Thirty adults with DS (age = 29 ± 10 years) were enrolled in a trial comparing clinical and objectively determined refractions. Monocular VA was recorded unaided and aided with best refraction. Vectors M, J0, and J45 were calculated from unaided wavefront aberration measures at the habitual pupil size. The square root of the sum of the squared vectors was calculated providing a single positive vector length representing unaided refractive error. Residual refractive error was determined after applying the best performing refraction. Linear regression determined correlation between refractive error and VAs.</p><p><strong>Results: </strong>Unaided and aided VAs ranged from 0.22 to 1.42 logMAR and 0.06 to 0.82 logMAR, respectively. Unaided and residual refractive error represented as vector length ranged from 0.68 diopters (D) to 13.76 D and 0.05 D to 1.87 D, respectively. Unaided refractive error and VA were significantly positively correlated (r2 = 0.776, P < 0.001), but not residual refractive error and VA (r2 = 0.005, P = 0.721).</p><p><strong>Conclusions: </strong>There was a positive correlation between unaided VA and refractive error magnitude in adults with DS; however, unaided VA was better than expected given the high levels of refractive error. Aided VA and residual refractive error were not correlated, despite overall low levels of remaining residual refractive error, suggesting that factors in addition to optical quality may be limiting VA in this population.</p><p><strong>Translational relevance: </strong>Understanding the relationship between refractive error and VA in individuals with DS may provide clinicians clearer expectations for the acuity end points before and after correction for this patient population.</p>","PeriodicalId":23322,"journal":{"name":"Translational Vision Science & Technology","volume":"14 1","pages":"30"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781328/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Vision Science & Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/tvst.14.1.30","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Individuals with Down syndrome (DS) have reduced visual acuity (VA), even when wearing refractive correction. The relationship between refractive error and VA in adults with DS is explored.

Methods: Thirty adults with DS (age = 29 ± 10 years) were enrolled in a trial comparing clinical and objectively determined refractions. Monocular VA was recorded unaided and aided with best refraction. Vectors M, J0, and J45 were calculated from unaided wavefront aberration measures at the habitual pupil size. The square root of the sum of the squared vectors was calculated providing a single positive vector length representing unaided refractive error. Residual refractive error was determined after applying the best performing refraction. Linear regression determined correlation between refractive error and VAs.

Results: Unaided and aided VAs ranged from 0.22 to 1.42 logMAR and 0.06 to 0.82 logMAR, respectively. Unaided and residual refractive error represented as vector length ranged from 0.68 diopters (D) to 13.76 D and 0.05 D to 1.87 D, respectively. Unaided refractive error and VA were significantly positively correlated (r2 = 0.776, P < 0.001), but not residual refractive error and VA (r2 = 0.005, P = 0.721).

Conclusions: There was a positive correlation between unaided VA and refractive error magnitude in adults with DS; however, unaided VA was better than expected given the high levels of refractive error. Aided VA and residual refractive error were not correlated, despite overall low levels of remaining residual refractive error, suggesting that factors in addition to optical quality may be limiting VA in this population.

Translational relevance: Understanding the relationship between refractive error and VA in individuals with DS may provide clinicians clearer expectations for the acuity end points before and after correction for this patient population.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Translational Vision Science & Technology
Translational Vision Science & Technology Engineering-Biomedical Engineering
CiteScore
5.70
自引率
3.30%
发文量
346
审稿时长
25 weeks
期刊介绍: Translational Vision Science & Technology (TVST), an official journal of the Association for Research in Vision and Ophthalmology (ARVO), an international organization whose purpose is to advance research worldwide into understanding the visual system and preventing, treating and curing its disorders, is an online, open access, peer-reviewed journal emphasizing multidisciplinary research that bridges the gap between basic research and clinical care. A highly qualified and diverse group of Associate Editors and Editorial Board Members is led by Editor-in-Chief Marco Zarbin, MD, PhD, FARVO. The journal covers a broad spectrum of work, including but not limited to: Applications of stem cell technology for regenerative medicine, Development of new animal models of human diseases, Tissue bioengineering, Chemical engineering to improve virus-based gene delivery, Nanotechnology for drug delivery, Design and synthesis of artificial extracellular matrices, Development of a true microsurgical operating environment, Refining data analysis algorithms to improve in vivo imaging technology, Results of Phase 1 clinical trials, Reverse translational ("bedside to bench") research. TVST seeks manuscripts from scientists and clinicians with diverse backgrounds ranging from basic chemistry to ophthalmic surgery that will advance or change the way we understand and/or treat vision-threatening diseases. TVST encourages the use of color, multimedia, hyperlinks, program code and other digital enhancements.
期刊最新文献
Evaluation of the Long-Term Corneal Biomechanics Following SMILE With Different Residual Stromal Bed Thickness in Rabbits. Photoreceptor Outer Segment Reflectivity With Ultrahigh-Resolution Visible-Light Optical Coherence Tomography in Systemic Hydroxychloroquine Use. Corneal Resistance to Enzymatic Digestion After Rose Bengal and Combined Rose Bengal/Riboflavin Cross-Linking Is Oxygen Independent. An Intelligent Grading Model for Myopic Maculopathy Based on Long-Tailed Learning. Advances in OCT Angiography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1