Elizabeth A Mittell, Camille A Leblanc, Bjarni K Kristjánsson, Moira M Ferguson, Katja Räsänen, Michael B Morrissey
{"title":"Spatiotemporal variation in size-dependent growth rates in small isolated populations of Arctic charr (<i>Salvelinus alpinus</i>).","authors":"Elizabeth A Mittell, Camille A Leblanc, Bjarni K Kristjánsson, Moira M Ferguson, Katja Räsänen, Michael B Morrissey","doi":"10.1098/rsos.241802","DOIUrl":null,"url":null,"abstract":"<p><p>As a key life-history trait, growth rates are often used to measure individual performance and to inform parameters in demographic models. Furthermore, intraspecific trait variation generates diversity in nature. Therefore, partitioning out and understanding drivers of spatiotemporal variation in growth rate is of fundamental interest in ecology and evolution. However, this has rarely been attempted owing to the amount of individual-level data required through both time and space, and issues with missing data in important covariates. Here, we implemented a Bayesian state-space model using individual-level data from 20 populations of Arctic charr (<i>Salvelinus alpinus</i>) across 15 capture occasions, which allowed us to: (i) integrate over the uncertainty of missing recapture records; (ii) robustly estimate size-dependence; and (iii) include a covariate (water temperature) that contained missing data. Interestingly, although there was substantial spatial, temporal and spatiotemporal variation in growth rate, this was only weakly associated with variation in water temperature and almost entirely independent of size, suggesting that spatiotemporal variation in other environmental conditions affected individuals across sizes similarly. This fine-scale spatiotemporal variation emphasizes the importance of local conditions and highlights the potential for spatiotemporal variation in a size-dependent life-history trait, even when environmental conditions are apparently very similar.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 1","pages":"241802"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774588/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.241802","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
As a key life-history trait, growth rates are often used to measure individual performance and to inform parameters in demographic models. Furthermore, intraspecific trait variation generates diversity in nature. Therefore, partitioning out and understanding drivers of spatiotemporal variation in growth rate is of fundamental interest in ecology and evolution. However, this has rarely been attempted owing to the amount of individual-level data required through both time and space, and issues with missing data in important covariates. Here, we implemented a Bayesian state-space model using individual-level data from 20 populations of Arctic charr (Salvelinus alpinus) across 15 capture occasions, which allowed us to: (i) integrate over the uncertainty of missing recapture records; (ii) robustly estimate size-dependence; and (iii) include a covariate (water temperature) that contained missing data. Interestingly, although there was substantial spatial, temporal and spatiotemporal variation in growth rate, this was only weakly associated with variation in water temperature and almost entirely independent of size, suggesting that spatiotemporal variation in other environmental conditions affected individuals across sizes similarly. This fine-scale spatiotemporal variation emphasizes the importance of local conditions and highlights the potential for spatiotemporal variation in a size-dependent life-history trait, even when environmental conditions are apparently very similar.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.