Analysis and prediction of atmospheric ozone concentrations using machine learning.

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers in Big Data Pub Date : 2025-01-15 eCollection Date: 2024-01-01 DOI:10.3389/fdata.2024.1469809
Stephan Räss, Markus C Leuenberger
{"title":"Analysis and prediction of atmospheric ozone concentrations using machine learning.","authors":"Stephan Räss, Markus C Leuenberger","doi":"10.3389/fdata.2024.1469809","DOIUrl":null,"url":null,"abstract":"<p><p>Atmospheric ozone chemistry involves various substances and reactions, which makes it a complex system. We analyzed data recorded by Switzerland's National Air Pollution Monitoring Network (NABEL) to showcase the capabilities of machine learning (ML) for the prediction of ozone concentrations (daily averages) and to document a general approach that can be followed by anyone facing similar problems. We evaluated various artificial neural networks and compared them to linear as well as non-linear models deduced with ML. The main analyses and the training of the models were performed on atmospheric air data recorded from 2016 to 2023 at the NABEL station Lugano-Università in Lugano, TI, Switzerland. As a first step, we used techniques like best subset selection to determine the measurement parameters that might be relevant for the prediction of ozone concentrations; in general, the parameters identified by these methods agree with atmospheric ozone chemistry. Based on these results, we constructed various models and used them to predict ozone concentrations in Lugano for the period between January 1, 2024, and March 31, 2024; then, we compared the output of our models to the actual measurements and repeated this procedure for two NABEL stations situated in northern Switzerland (Dübendorf-Empa and Zürich-Kaserne). For these stations, predictions were made for the aforementioned period and the period between January 1, 2023, and December 31, 2023. In most of the cases, the lowest mean absolute errors (MAE) were provided by a non-linear model with 12 components (different powers and linear combinations of NO<sub>2</sub>, NO<sub>X</sub>, SO<sub>2</sub>, non-methane volatile organic compounds, temperature and radiation); the MAE of predicted ozone concentrations in Lugano was as low as 9 μgm<sup>-3</sup>. For the stations in Zürich and Dübendorf, the lowest MAEs were around 11 μgm<sup>-3</sup> and 13 μgm<sup>-3</sup>, respectively. For the tested periods, the accuracy of the best models was approximately 1 μgm<sup>-3</sup>. Since the aforementioned values are all lower than the standard deviations of the observations we conclude that using ML for complex data analyses can be very helpful and that artificial neural networks do not necessarily outperform simpler models.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"7 ","pages":"1469809"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774898/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2024.1469809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Atmospheric ozone chemistry involves various substances and reactions, which makes it a complex system. We analyzed data recorded by Switzerland's National Air Pollution Monitoring Network (NABEL) to showcase the capabilities of machine learning (ML) for the prediction of ozone concentrations (daily averages) and to document a general approach that can be followed by anyone facing similar problems. We evaluated various artificial neural networks and compared them to linear as well as non-linear models deduced with ML. The main analyses and the training of the models were performed on atmospheric air data recorded from 2016 to 2023 at the NABEL station Lugano-Università in Lugano, TI, Switzerland. As a first step, we used techniques like best subset selection to determine the measurement parameters that might be relevant for the prediction of ozone concentrations; in general, the parameters identified by these methods agree with atmospheric ozone chemistry. Based on these results, we constructed various models and used them to predict ozone concentrations in Lugano for the period between January 1, 2024, and March 31, 2024; then, we compared the output of our models to the actual measurements and repeated this procedure for two NABEL stations situated in northern Switzerland (Dübendorf-Empa and Zürich-Kaserne). For these stations, predictions were made for the aforementioned period and the period between January 1, 2023, and December 31, 2023. In most of the cases, the lowest mean absolute errors (MAE) were provided by a non-linear model with 12 components (different powers and linear combinations of NO2, NOX, SO2, non-methane volatile organic compounds, temperature and radiation); the MAE of predicted ozone concentrations in Lugano was as low as 9 μgm-3. For the stations in Zürich and Dübendorf, the lowest MAEs were around 11 μgm-3 and 13 μgm-3, respectively. For the tested periods, the accuracy of the best models was approximately 1 μgm-3. Since the aforementioned values are all lower than the standard deviations of the observations we conclude that using ML for complex data analyses can be very helpful and that artificial neural networks do not necessarily outperform simpler models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
期刊最新文献
Enhancing smart home environments: a novel pattern recognition approach to ambient acoustic event detection and localization. Balancing act: Europeans' privacy calculus and security concerns in online CSAM detection. A scalable tool for analyzing genomic variants of humans using knowledge graphs and graph machine learning. Artificial intelligence for the detection of acute myeloid leukemia from microscopic blood images; a systematic review and meta-analysis. Toward a physics-guided machine learning approach for predicting chaotic systems dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1