A scalable tool for analyzing genomic variants of humans using knowledge graphs and graph machine learning.

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers in Big Data Pub Date : 2025-01-21 eCollection Date: 2024-01-01 DOI:10.3389/fdata.2024.1466391
Shivika Prasanna, Ajay Kumar, Deepthi Rao, Eduardo J Simoes, Praveen Rao
{"title":"A scalable tool for analyzing genomic variants of humans using knowledge graphs and graph machine learning.","authors":"Shivika Prasanna, Ajay Kumar, Deepthi Rao, Eduardo J Simoes, Praveen Rao","doi":"10.3389/fdata.2024.1466391","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in high-throughput genome sequencing have enabled large-scale genome sequencing in clinical practice and research studies. By analyzing genomic variants of humans, scientists can gain better understanding of the risk factors of complex diseases such as cancer and COVID-19. To model and analyze the rich genomic data, knowledge graphs (KGs) and graph machine learning (GML) can be regarded as enabling technologies. In this article, we present a scalable tool called VariantKG for analyzing genomic variants of humans modeled using KGs and GML. Specifically, we used publicly available genome sequencing data from patients with COVID-19. VariantKG extracts variant-level genetic information output by a variant calling pipeline, annotates the variant data with additional metadata, and converts the annotated variant information into a KG represented using the Resource Description Framework (RDF). The resulting KG is further enhanced with patient metadata and stored in a scalable graph database that enables efficient RDF indexing and query processing. VariantKG employs the Deep Graph Library (DGL) to perform GML tasks such as node classification. A user can extract a subset of the KG and perform inference tasks using DGL. The user can monitor the training and testing performance and hardware utilization. We tested VariantKG for KG construction by using 1,508 genome sequences, leading to 4 billion RDF statements. We evaluated GML tasks using VariantKG by selecting a subset of 500 sequences from the KG and performing node classification using well-known GML techniques such as GraphSAGE, Graph Convolutional Network (GCN) and Graph Transformer. VariantKG has intuitive user interfaces and features enabling a low barrier to entry for KG construction, model inference, and model interpretation on genomic variants of humans.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"7 ","pages":"1466391"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790625/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2024.1466391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in high-throughput genome sequencing have enabled large-scale genome sequencing in clinical practice and research studies. By analyzing genomic variants of humans, scientists can gain better understanding of the risk factors of complex diseases such as cancer and COVID-19. To model and analyze the rich genomic data, knowledge graphs (KGs) and graph machine learning (GML) can be regarded as enabling technologies. In this article, we present a scalable tool called VariantKG for analyzing genomic variants of humans modeled using KGs and GML. Specifically, we used publicly available genome sequencing data from patients with COVID-19. VariantKG extracts variant-level genetic information output by a variant calling pipeline, annotates the variant data with additional metadata, and converts the annotated variant information into a KG represented using the Resource Description Framework (RDF). The resulting KG is further enhanced with patient metadata and stored in a scalable graph database that enables efficient RDF indexing and query processing. VariantKG employs the Deep Graph Library (DGL) to perform GML tasks such as node classification. A user can extract a subset of the KG and perform inference tasks using DGL. The user can monitor the training and testing performance and hardware utilization. We tested VariantKG for KG construction by using 1,508 genome sequences, leading to 4 billion RDF statements. We evaluated GML tasks using VariantKG by selecting a subset of 500 sequences from the KG and performing node classification using well-known GML techniques such as GraphSAGE, Graph Convolutional Network (GCN) and Graph Transformer. VariantKG has intuitive user interfaces and features enabling a low barrier to entry for KG construction, model inference, and model interpretation on genomic variants of humans.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
期刊最新文献
A scalable tool for analyzing genomic variants of humans using knowledge graphs and graph machine learning. Artificial intelligence for the detection of acute myeloid leukemia from microscopic blood images; a systematic review and meta-analysis. Toward a physics-guided machine learning approach for predicting chaotic systems dynamics. Analysis and prediction of atmospheric ozone concentrations using machine learning. Prediction model of middle school student performance based on MBSO and MDBO-BP-Adaboost method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1