Wei Du, Su Jiang, Nan Fu, Jialuo Song, Xianbiao Lin, Kang Mao, Jianwu Shi, Yuanchen Chen, Jiangping Liu, Shu Tao
{"title":"Ammonia and amines emissions from residential biomass combustion in China from 2014 to 2030","authors":"Wei Du, Su Jiang, Nan Fu, Jialuo Song, Xianbiao Lin, Kang Mao, Jianwu Shi, Yuanchen Chen, Jiangping Liu, Shu Tao","doi":"10.1016/j.jhazmat.2025.137476","DOIUrl":null,"url":null,"abstract":"Residential biomass combustion has been widely recognized as an important source of ammonia (NH<sub>3</sub>) and organic amines in the atmosphere, while not being fully understood at this stage. This study developed the first emission inventory of gaseous organic amine and ammonia emissions from residential biomass combustion in China from 2014 to 2019, and the future trends up to 2030 were further projected by using the ARIMA model. It was found that biomass burning remains a significant source of NH<sub>3</sub> and amines with significant regional disparities. Southwestern and central regions exhibited higher emissions, while economically developed eastern provinces showed lower emissions. Overall, the emissions and emission densities of organic amines and NH<sub>3</sub> have declined from 2014 to 2019 (from 8.74 and 213.60 to 4.47 and 109.90<!-- --> <!-- -->kt, respectively), primarily due to the residential energy transition toward clean energy and a decrease in rural population. The simulation of emissions from 2020 to 2030 also showed the same downward trend. Nevertheless, regions such as Southwest China, which remain heavily dependent on biomass use, continue to experience relatively high emissions. This study highlights the need for targeted emission reduction strategies, especially in regions where clean energy adoption lags. The findings provide a scientific basis for future policy interventions aimed at mitigating emissions from biomass combustion in rural China.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"33 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137476","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Residential biomass combustion has been widely recognized as an important source of ammonia (NH3) and organic amines in the atmosphere, while not being fully understood at this stage. This study developed the first emission inventory of gaseous organic amine and ammonia emissions from residential biomass combustion in China from 2014 to 2019, and the future trends up to 2030 were further projected by using the ARIMA model. It was found that biomass burning remains a significant source of NH3 and amines with significant regional disparities. Southwestern and central regions exhibited higher emissions, while economically developed eastern provinces showed lower emissions. Overall, the emissions and emission densities of organic amines and NH3 have declined from 2014 to 2019 (from 8.74 and 213.60 to 4.47 and 109.90 kt, respectively), primarily due to the residential energy transition toward clean energy and a decrease in rural population. The simulation of emissions from 2020 to 2030 also showed the same downward trend. Nevertheless, regions such as Southwest China, which remain heavily dependent on biomass use, continue to experience relatively high emissions. This study highlights the need for targeted emission reduction strategies, especially in regions where clean energy adoption lags. The findings provide a scientific basis for future policy interventions aimed at mitigating emissions from biomass combustion in rural China.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.