S. Sindhusuta, Sheng-Wei Chi, Craig Foster, Timothy Officer, Yanbin Wang
{"title":"Numerical Investigation Into Mechanical Behavior of Metastable Olivine During Phase Transformation: Implications for Deep-Focus Earthquakes","authors":"S. Sindhusuta, Sheng-Wei Chi, Craig Foster, Timothy Officer, Yanbin Wang","doi":"10.1029/2024jb030557","DOIUrl":null,"url":null,"abstract":"One hypothesized mechanism that triggers deep-focus earthquakes in oceanic subducting slabs below ∼300 km depth is transformational faulting due to the olivine-to-spinel phase transition. This study uses finite element modeling to investigate phase transformation-induced stress redistribution and material weakening in olivine. A thermodynamically consistent constitutive model is developed to capture the evolution of phase transformation in olivine under different pressure and temperature conditions. The overall numerical model enables considering multiscale material features, including the polycrystalline structure, mesoscale heterogeneity, and various phases or variants of phases at the microscopic level, and accounts for viscoplastic behaviors with thermo-mechanical coupling effects. The model is validated with several benchmarks, including a phase diagram of phase transformation from olivine to spinel. The validated model is used to study the interactive behaviors between defects (heterogeneity) and phase transformation. The simulation results reveal that spinel formation under pressure initiates near inclusions and along the grain boundaries, consistent with experimental observations. At lower temperatures, the transformation leads to the formation of thin conjugate bands of spinel diagonal to the compression loading direction. Local stress analysis along these bands also suggests the initiation of faulting. In contrast, the numerical results at higher transformation rates show that significant spinel formation occurs over a larger area at elevated temperatures, leading to ductile behavior, which agrees with experimental findings. Numerical simulation of multiple inclusions under confined pressure also shows the formation of a network of spinel bands resembling phase-transformation patterns observed in the laboratory experiments. Additionally, stress softening patterns due to phase transformation are similar to experimental observations.","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"240 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024jb030557","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
One hypothesized mechanism that triggers deep-focus earthquakes in oceanic subducting slabs below ∼300 km depth is transformational faulting due to the olivine-to-spinel phase transition. This study uses finite element modeling to investigate phase transformation-induced stress redistribution and material weakening in olivine. A thermodynamically consistent constitutive model is developed to capture the evolution of phase transformation in olivine under different pressure and temperature conditions. The overall numerical model enables considering multiscale material features, including the polycrystalline structure, mesoscale heterogeneity, and various phases or variants of phases at the microscopic level, and accounts for viscoplastic behaviors with thermo-mechanical coupling effects. The model is validated with several benchmarks, including a phase diagram of phase transformation from olivine to spinel. The validated model is used to study the interactive behaviors between defects (heterogeneity) and phase transformation. The simulation results reveal that spinel formation under pressure initiates near inclusions and along the grain boundaries, consistent with experimental observations. At lower temperatures, the transformation leads to the formation of thin conjugate bands of spinel diagonal to the compression loading direction. Local stress analysis along these bands also suggests the initiation of faulting. In contrast, the numerical results at higher transformation rates show that significant spinel formation occurs over a larger area at elevated temperatures, leading to ductile behavior, which agrees with experimental findings. Numerical simulation of multiple inclusions under confined pressure also shows the formation of a network of spinel bands resembling phase-transformation patterns observed in the laboratory experiments. Additionally, stress softening patterns due to phase transformation are similar to experimental observations.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.