Seasonal Shifts in Trophic Interaction Strength Drive Stability of Natural Food Webs

IF 7.6 1区 环境科学与生态学 Q1 ECOLOGY Ecology Letters Pub Date : 2025-02-01 DOI:10.1111/ele.70075
Ursula Gaedke, Xiaoxiao Li, Christian Guill, Lia Hemerik, Peter C. de Ruiter
{"title":"Seasonal Shifts in Trophic Interaction Strength Drive Stability of Natural Food Webs","authors":"Ursula Gaedke, Xiaoxiao Li, Christian Guill, Lia Hemerik, Peter C. de Ruiter","doi":"10.1111/ele.70075","DOIUrl":null,"url":null,"abstract":"It remains challenging to understand why natural food webs are remarkably stable despite highly variable environmental factors and population densities. We investigated the dynamics in the structure and stability of Lake Constance's pelagic food web using 7 years of high‐frequency observations of biomasses and production, leading to 59 seasonally resolved quantitative food web descriptions. We assessed the dynamics in asymptotic food web stability through maximum loop weight, which revealed underlying stability mechanisms. Maximum loop weight showed a recurrent seasonal pattern with a consistently high stability despite pronounced dynamics in biomasses, fluxes and productivity. This stability resulted from seasonal rewiring of the food web, driven by energetic constraints within loops and their embedding into food web structure. The stabilising restructuring emerged from counter‐acting effects of metabolic activity and competitiveness/susceptibility to predation within a diverse grazer community on loop weight. This underscores the role of functional diversity in promoting food web stability.","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"77 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ele.70075","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

It remains challenging to understand why natural food webs are remarkably stable despite highly variable environmental factors and population densities. We investigated the dynamics in the structure and stability of Lake Constance's pelagic food web using 7 years of high‐frequency observations of biomasses and production, leading to 59 seasonally resolved quantitative food web descriptions. We assessed the dynamics in asymptotic food web stability through maximum loop weight, which revealed underlying stability mechanisms. Maximum loop weight showed a recurrent seasonal pattern with a consistently high stability despite pronounced dynamics in biomasses, fluxes and productivity. This stability resulted from seasonal rewiring of the food web, driven by energetic constraints within loops and their embedding into food web structure. The stabilising restructuring emerged from counter‐acting effects of metabolic activity and competitiveness/susceptibility to predation within a diverse grazer community on loop weight. This underscores the role of functional diversity in promoting food web stability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecology Letters
Ecology Letters 环境科学-生态学
CiteScore
17.60
自引率
3.40%
发文量
201
审稿时长
1.8 months
期刊介绍: Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.
期刊最新文献
Seasonal Shifts in Trophic Interaction Strength Drive Stability of Natural Food Webs Intraspecific Diversity in Thermal Performance Determines Phytoplankton Ecological Niche A Probabilistic View of Forbidden Links: Their Prevalence and Their Consequences for the Robustness of Plant–Hummingbird Communities A Non-Equilibrium Species Distribution Model Reveals Unprecedented Depth of Time Lag Responses to Past Environmental Change Trajectories Causal Inference With Observational Data and Unobserved Confounding Variables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1