Molybdate-loaded magnetic biochar activates persulfate for efficient degradation of sulfamethazine

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL Separation and Purification Technology Pub Date : 2025-02-02 DOI:10.1016/j.seppur.2025.131911
Linan Xu, Yifu Peng, Zhanqiang Fang
{"title":"Molybdate-loaded magnetic biochar activates persulfate for efficient degradation of sulfamethazine","authors":"Linan Xu, Yifu Peng, Zhanqiang Fang","doi":"10.1016/j.seppur.2025.131911","DOIUrl":null,"url":null,"abstract":"Molybdate-doped magnetic biochar (MoMBC) was synthesized using sawdust as the raw material through impregnation and pyrolysis. MoMBC was utilized to activate persulfate (PS) for the degradation of sulfamethazine (SMT). The results demonstrated that at a MoMBC dosage of 0.1 g/L and PS concentration of 2 mM, the MoMBC/PS system exhibited a stabilization of SMT degradation efficiency at a level exceeding 98.1 % within 120 min. This was accompanied by a reaction rate constant was 31 times greater than observed in the MBC/PS system. Characterization analysis of MoMBC revealed that molybdate loading facilitated the redox cycling of Fe<sup>3+</sup>/Fe<sup>2+</sup> and Mo<sup>6+</sup>/Mo<sup>4+</sup>, thereby enhancing the activation efficiency of PS and accelerating SMT degradation. Through free radical quenching experiments and electron paramagnetic resonance analysis, it was found that the contribution rates of superoxide radicals and hydroxyl radicals were 44.47 % and 33.09 %, respectively, which were the main free radicals promoting the degradation of SMT. Under the coexistence of natural organic matter and anions, the influence of MoMBC/PS system is insignificant. Its powerful broad-spectrum features make it appropriate for the degradation of diverse antibiotics, with a mineralisation rate of 59.9 %. The degradation of SMT undergoes processes such as oxidation, hydroxylation, and removal of SO<sub>2</sub>. This study provides new technical support for the practical implementation of magnetic biochar in the remediation of water pollution.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"31 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.131911","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Molybdate-doped magnetic biochar (MoMBC) was synthesized using sawdust as the raw material through impregnation and pyrolysis. MoMBC was utilized to activate persulfate (PS) for the degradation of sulfamethazine (SMT). The results demonstrated that at a MoMBC dosage of 0.1 g/L and PS concentration of 2 mM, the MoMBC/PS system exhibited a stabilization of SMT degradation efficiency at a level exceeding 98.1 % within 120 min. This was accompanied by a reaction rate constant was 31 times greater than observed in the MBC/PS system. Characterization analysis of MoMBC revealed that molybdate loading facilitated the redox cycling of Fe3+/Fe2+ and Mo6+/Mo4+, thereby enhancing the activation efficiency of PS and accelerating SMT degradation. Through free radical quenching experiments and electron paramagnetic resonance analysis, it was found that the contribution rates of superoxide radicals and hydroxyl radicals were 44.47 % and 33.09 %, respectively, which were the main free radicals promoting the degradation of SMT. Under the coexistence of natural organic matter and anions, the influence of MoMBC/PS system is insignificant. Its powerful broad-spectrum features make it appropriate for the degradation of diverse antibiotics, with a mineralisation rate of 59.9 %. The degradation of SMT undergoes processes such as oxidation, hydroxylation, and removal of SO2. This study provides new technical support for the practical implementation of magnetic biochar in the remediation of water pollution.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
期刊最新文献
Porous Si-doped flower-like BiOCl with hydrophobic interfaces for efficient CO2-to-formate conversion Tape casting technique in the fabrication of ceramic membranes: A review of influential factors and applications in water and wastewater treatment Degradation of 29 per- and poly-fluoroalkyl substances (PFAS) in water using fenton-assisted electrochemical oxidation process Mechanistic insights into the role of branched polyethylenimine in breaking Asphaltene-Stabilized Oil-in-Water emulsions: Temperature effects Molybdate-loaded magnetic biochar activates persulfate for efficient degradation of sulfamethazine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1