{"title":"New solubility model for solid drugs in pure solvents based on solute-solvent interfacial tension","authors":"Yueqiang Zhao","doi":"10.1016/j.ejpb.2025.114653","DOIUrl":null,"url":null,"abstract":"<div><div>The solubility of drugs in biological fluids is associated with pharmacokinetic properties (absorption, biotransformation and excretion), efficacy and toxicity. It is a fascinating and challenging task to uncover the intrinsic reason underlying the dissolution behavior of pharmaceuticals. The classical thermodynamic method estimates the drug solubility in liquid solvent via Solid-Liquid Equilibrium (SLE) equation plus activity coefficient models (UNIFAC, COSMO-RS, COSMO-SAC, etc), where the molar dissolution energy (partial molar excess Gibbs energy) of solute molecules in solution is calculated through activity coefficient models. The new method predicts the solute solubility via the transfer free energy (from solid phase to liquid phase) of solute molecules in terms of fusion properties and solute–solvent (liquid–liquid) interfacial tension, where the molar dissolution energy of solute molecules is determined by solute–solvent interfacial tension, and the solute–solvent (liquid–liquid) interfacial tension is obtained from the cohesive energy calculation results of COSMO-UCE (Conductor-Like Screening Model for Universal Cohesive Energy estimation) based merely on the molecular structure. The application of this model in solubility prediction of solid drugs in pure liquid solvents has been verified extensively with successful results. This model yields similar solute solubility representation performance as that of SLE + UNIFAC, and obtains much better solubility prediction results than SLE + COSMO-SAC.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"208 ","pages":"Article 114653"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641125000293","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The solubility of drugs in biological fluids is associated with pharmacokinetic properties (absorption, biotransformation and excretion), efficacy and toxicity. It is a fascinating and challenging task to uncover the intrinsic reason underlying the dissolution behavior of pharmaceuticals. The classical thermodynamic method estimates the drug solubility in liquid solvent via Solid-Liquid Equilibrium (SLE) equation plus activity coefficient models (UNIFAC, COSMO-RS, COSMO-SAC, etc), where the molar dissolution energy (partial molar excess Gibbs energy) of solute molecules in solution is calculated through activity coefficient models. The new method predicts the solute solubility via the transfer free energy (from solid phase to liquid phase) of solute molecules in terms of fusion properties and solute–solvent (liquid–liquid) interfacial tension, where the molar dissolution energy of solute molecules is determined by solute–solvent interfacial tension, and the solute–solvent (liquid–liquid) interfacial tension is obtained from the cohesive energy calculation results of COSMO-UCE (Conductor-Like Screening Model for Universal Cohesive Energy estimation) based merely on the molecular structure. The application of this model in solubility prediction of solid drugs in pure liquid solvents has been verified extensively with successful results. This model yields similar solute solubility representation performance as that of SLE + UNIFAC, and obtains much better solubility prediction results than SLE + COSMO-SAC.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.