Fabrication and characterization of dissolving microneedles combining Digital light processing and vacuum compression molding technique for the transdermal delivery of rivastigmine.

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY European Journal of Pharmaceutics and Biopharmaceutics Pub Date : 2025-03-03 DOI:10.1016/j.ejpb.2025.114687
Paraskevi Kyriaki Monou, Eirini Saropoulou, Laura Andrade Junqueira, Siva Satyanarayana Kolipaka, Eleftherios G Andriotis, Emmanouil Tzimtzimis, Dimitrios Tzetzis, Chrysanthi Bekiari, Nikolaos Bouropoulos, Bethany Harding, Orestis L Katsamenis, Andreas Bramböck, Daniel Treffer, Dennis Douroumis, Dimitrios G Fatouros
{"title":"Fabrication and characterization of dissolving microneedles combining Digital light processing and vacuum compression molding technique for the transdermal delivery of rivastigmine.","authors":"Paraskevi Kyriaki Monou, Eirini Saropoulou, Laura Andrade Junqueira, Siva Satyanarayana Kolipaka, Eleftherios G Andriotis, Emmanouil Tzimtzimis, Dimitrios Tzetzis, Chrysanthi Bekiari, Nikolaos Bouropoulos, Bethany Harding, Orestis L Katsamenis, Andreas Bramböck, Daniel Treffer, Dennis Douroumis, Dimitrios G Fatouros","doi":"10.1016/j.ejpb.2025.114687","DOIUrl":null,"url":null,"abstract":"<p><p>Dissolving microneedles (MNs) are promising transdermal drug delivery systems that can effectively increase the absorption of the drugs. They bypass the first layer of the skin, the stratum corneum (SC) and deliver the drugs directly into the dermis, by dissolving inside the interstitial fluid and releasing the active. The traditional ways of MN fabrication involve primarily micromolding, which basically uses silicone molds. Drugs and polymer mixture solutions are poured into these molds and after drying the MN arrays are carefully removed. In the present study, a novel molding process was employed to fabricate dissolving MNs containing rivastigmine (RIV). RIV is available as an oral tablet and a transdermal patch. The patch (Exelon®), used for managing Alzheimer's symptoms in mild to moderate dementia, releases only about 50 % of its drug content, raising concerns about dose wastage, environmental impact, and patient costs. Thus, RIV was selected as the model drug to fabricate MNs by combining to novel processes, Digital Light Processing and Free-D Molding, a Vacuum Compression Molding (VCM) Technique provided by MeltPrep®. The developed arrays were evaluated regarding their physiochemical characteristics and their ability to penetrate the skin without breaking or creating fragments, as they can withstand forces up to 600 N. The MNs were visualized using optical microscopy, SEM, and CLSM to examine their geometry, surface and length (0.708 mm). Permeability studies verified that the MNs can increase significantly RIV transportation across the skin, up to 9-fold. Histological analysis was conducted to ensure that the produced MNs are safe for transdermal applications. Overall, the present study suggests that Free-D molding, a combination of 3D printing and VCM can produce dissolving MN arrays that are effective and safe for transdermal applications.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114687"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejpb.2025.114687","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Dissolving microneedles (MNs) are promising transdermal drug delivery systems that can effectively increase the absorption of the drugs. They bypass the first layer of the skin, the stratum corneum (SC) and deliver the drugs directly into the dermis, by dissolving inside the interstitial fluid and releasing the active. The traditional ways of MN fabrication involve primarily micromolding, which basically uses silicone molds. Drugs and polymer mixture solutions are poured into these molds and after drying the MN arrays are carefully removed. In the present study, a novel molding process was employed to fabricate dissolving MNs containing rivastigmine (RIV). RIV is available as an oral tablet and a transdermal patch. The patch (Exelon®), used for managing Alzheimer's symptoms in mild to moderate dementia, releases only about 50 % of its drug content, raising concerns about dose wastage, environmental impact, and patient costs. Thus, RIV was selected as the model drug to fabricate MNs by combining to novel processes, Digital Light Processing and Free-D Molding, a Vacuum Compression Molding (VCM) Technique provided by MeltPrep®. The developed arrays were evaluated regarding their physiochemical characteristics and their ability to penetrate the skin without breaking or creating fragments, as they can withstand forces up to 600 N. The MNs were visualized using optical microscopy, SEM, and CLSM to examine their geometry, surface and length (0.708 mm). Permeability studies verified that the MNs can increase significantly RIV transportation across the skin, up to 9-fold. Histological analysis was conducted to ensure that the produced MNs are safe for transdermal applications. Overall, the present study suggests that Free-D molding, a combination of 3D printing and VCM can produce dissolving MN arrays that are effective and safe for transdermal applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
4.10%
发文量
211
审稿时长
36 days
期刊介绍: The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics. Topics covered include for example: Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids) Aspects of manufacturing process design Biomedical aspects of drug product design Strategies and formulations for controlled drug transport across biological barriers Physicochemical aspects of drug product development Novel excipients for drug product design Drug delivery and controlled release systems for systemic and local applications Nanomaterials for therapeutic and diagnostic purposes Advanced therapy medicinal products Medical devices supporting a distinct pharmacological effect.
期刊最新文献
Editorial Board Corrigendum to "Preparation of thrombin-loaded calcium alginate microspheres with dual-mode imaging and study on their embolic properties in vivo" [Eur. J. Pharm. Biopharm. 189 (2023) 98-108]. Fabrication and characterization of dissolving microneedles combining Digital light processing and vacuum compression molding technique for the transdermal delivery of rivastigmine. Breaking the virus: Yeast glucans as an effective alternative to acyclovir in HSVI treatment Studying the effects of polymers on therapeutic deep eutectic solvents' formation and stability: A thermal analysis-based approach to optimise polymer selection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1