Fabrication and characterization of dissolving microneedles combining Digital light processing and vacuum compression molding technique for the transdermal delivery of rivastigmine.
Paraskevi Kyriaki Monou, Eirini Saropoulou, Laura Andrade Junqueira, Siva Satyanarayana Kolipaka, Eleftherios G Andriotis, Emmanouil Tzimtzimis, Dimitrios Tzetzis, Chrysanthi Bekiari, Nikolaos Bouropoulos, Bethany Harding, Orestis L Katsamenis, Andreas Bramböck, Daniel Treffer, Dennis Douroumis, Dimitrios G Fatouros
{"title":"Fabrication and characterization of dissolving microneedles combining Digital light processing and vacuum compression molding technique for the transdermal delivery of rivastigmine.","authors":"Paraskevi Kyriaki Monou, Eirini Saropoulou, Laura Andrade Junqueira, Siva Satyanarayana Kolipaka, Eleftherios G Andriotis, Emmanouil Tzimtzimis, Dimitrios Tzetzis, Chrysanthi Bekiari, Nikolaos Bouropoulos, Bethany Harding, Orestis L Katsamenis, Andreas Bramböck, Daniel Treffer, Dennis Douroumis, Dimitrios G Fatouros","doi":"10.1016/j.ejpb.2025.114687","DOIUrl":null,"url":null,"abstract":"<p><p>Dissolving microneedles (MNs) are promising transdermal drug delivery systems that can effectively increase the absorption of the drugs. They bypass the first layer of the skin, the stratum corneum (SC) and deliver the drugs directly into the dermis, by dissolving inside the interstitial fluid and releasing the active. The traditional ways of MN fabrication involve primarily micromolding, which basically uses silicone molds. Drugs and polymer mixture solutions are poured into these molds and after drying the MN arrays are carefully removed. In the present study, a novel molding process was employed to fabricate dissolving MNs containing rivastigmine (RIV). RIV is available as an oral tablet and a transdermal patch. The patch (Exelon®), used for managing Alzheimer's symptoms in mild to moderate dementia, releases only about 50 % of its drug content, raising concerns about dose wastage, environmental impact, and patient costs. Thus, RIV was selected as the model drug to fabricate MNs by combining to novel processes, Digital Light Processing and Free-D Molding, a Vacuum Compression Molding (VCM) Technique provided by MeltPrep®. The developed arrays were evaluated regarding their physiochemical characteristics and their ability to penetrate the skin without breaking or creating fragments, as they can withstand forces up to 600 N. The MNs were visualized using optical microscopy, SEM, and CLSM to examine their geometry, surface and length (0.708 mm). Permeability studies verified that the MNs can increase significantly RIV transportation across the skin, up to 9-fold. Histological analysis was conducted to ensure that the produced MNs are safe for transdermal applications. Overall, the present study suggests that Free-D molding, a combination of 3D printing and VCM can produce dissolving MN arrays that are effective and safe for transdermal applications.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114687"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejpb.2025.114687","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Dissolving microneedles (MNs) are promising transdermal drug delivery systems that can effectively increase the absorption of the drugs. They bypass the first layer of the skin, the stratum corneum (SC) and deliver the drugs directly into the dermis, by dissolving inside the interstitial fluid and releasing the active. The traditional ways of MN fabrication involve primarily micromolding, which basically uses silicone molds. Drugs and polymer mixture solutions are poured into these molds and after drying the MN arrays are carefully removed. In the present study, a novel molding process was employed to fabricate dissolving MNs containing rivastigmine (RIV). RIV is available as an oral tablet and a transdermal patch. The patch (Exelon®), used for managing Alzheimer's symptoms in mild to moderate dementia, releases only about 50 % of its drug content, raising concerns about dose wastage, environmental impact, and patient costs. Thus, RIV was selected as the model drug to fabricate MNs by combining to novel processes, Digital Light Processing and Free-D Molding, a Vacuum Compression Molding (VCM) Technique provided by MeltPrep®. The developed arrays were evaluated regarding their physiochemical characteristics and their ability to penetrate the skin without breaking or creating fragments, as they can withstand forces up to 600 N. The MNs were visualized using optical microscopy, SEM, and CLSM to examine their geometry, surface and length (0.708 mm). Permeability studies verified that the MNs can increase significantly RIV transportation across the skin, up to 9-fold. Histological analysis was conducted to ensure that the produced MNs are safe for transdermal applications. Overall, the present study suggests that Free-D molding, a combination of 3D printing and VCM can produce dissolving MN arrays that are effective and safe for transdermal applications.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.