Application of a methodological framework for the development and multicenter validation of reliable artificial intelligence in embryo evaluation.

IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Reproductive Biology and Endocrinology Pub Date : 2025-01-31 DOI:10.1186/s12958-025-01351-w
D Gilboa, Akhil Garg, M Shapiro, M Meseguer, Y Amar, N Lustgarten, N Desai, T Shavit, V Silva, A Papatheodorou, A Chatziparasidou, S Angras, J H Lee, L Thiel, C L Curchoe, Y Tauber, D S Seidman
{"title":"Application of a methodological framework for the development and multicenter validation of reliable artificial intelligence in embryo evaluation.","authors":"D Gilboa, Akhil Garg, M Shapiro, M Meseguer, Y Amar, N Lustgarten, N Desai, T Shavit, V Silva, A Papatheodorou, A Chatziparasidou, S Angras, J H Lee, L Thiel, C L Curchoe, Y Tauber, D S Seidman","doi":"10.1186/s12958-025-01351-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence (AI) models analyzing embryo time-lapse images have been developed to predict the likelihood of pregnancy following in vitro fertilization (IVF). However, limited research exists on methods ensuring AI consistency and reliability in clinical settings during its development and validation process. We present a methodology for developing and validating an AI model across multiple datasets to demonstrate reliable performance in evaluating blastocyst-stage embryos.</p><p><strong>Methods: </strong>This multicenter analysis utilizes time-lapse images, pregnancy outcomes, and morphologic annotations from embryos collected at 10 IVF clinics across 9 countries between 2018 and 2022. The four-step methodology for developing and evaluating the AI model include: (I) curating annotated datasets that represent the intended clinical use case; (II) developing and optimizing the AI model; (III) evaluating the AI's performance by assessing its discriminative power and associations with pregnancy probability across variable data; and (IV) ensuring interpretability and explainability by correlating AI scores with relevant morphologic features of embryo quality. Three datasets were used: the training and validation dataset (n = 16,935 embryos), the blind test dataset (n = 1,708 embryos; 3 clinics), and the independent dataset (n = 7,445 embryos; 7 clinics) derived from previously unseen clinic cohorts.</p><p><strong>Results: </strong>The AI was designed as a deep learning classifier ranking embryos by score according to their likelihood of clinical pregnancy. Higher AI score brackets were associated with increased fetal heartbeat (FH) likelihood across all evaluated datasets, showing a trend of increasing odds ratios (OR). The highest OR was observed in the top G4 bracket (test dataset G4 score ≥ 7.5: OR 3.84; independent dataset G4 score ≥ 7.5: OR 4.01), while the lowest was in the G1 bracket (test dataset G1 score < 4.0: OR 0.40; independent dataset G1 score < 4.0: OR 0.45). AI score brackets G2, G3, and G4 displayed OR values above 1.0 (P < 0.05), indicating linear associations with FH likelihood. Average AI scores were consistently higher for FH-positive than for FH-negative embryos within each age subgroup. Positive correlations were also observed between AI scores and key morphologic parameters used to predict embryo quality.</p><p><strong>Conclusions: </strong>Strong AI performance across multiple datasets demonstrates the value of our four-step methodology in developing and validating the AI as a reliable adjunct to embryo evaluation.</p>","PeriodicalId":21011,"journal":{"name":"Reproductive Biology and Endocrinology","volume":"23 1","pages":"16"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783712/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive Biology and Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12958-025-01351-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Artificial intelligence (AI) models analyzing embryo time-lapse images have been developed to predict the likelihood of pregnancy following in vitro fertilization (IVF). However, limited research exists on methods ensuring AI consistency and reliability in clinical settings during its development and validation process. We present a methodology for developing and validating an AI model across multiple datasets to demonstrate reliable performance in evaluating blastocyst-stage embryos.

Methods: This multicenter analysis utilizes time-lapse images, pregnancy outcomes, and morphologic annotations from embryos collected at 10 IVF clinics across 9 countries between 2018 and 2022. The four-step methodology for developing and evaluating the AI model include: (I) curating annotated datasets that represent the intended clinical use case; (II) developing and optimizing the AI model; (III) evaluating the AI's performance by assessing its discriminative power and associations with pregnancy probability across variable data; and (IV) ensuring interpretability and explainability by correlating AI scores with relevant morphologic features of embryo quality. Three datasets were used: the training and validation dataset (n = 16,935 embryos), the blind test dataset (n = 1,708 embryos; 3 clinics), and the independent dataset (n = 7,445 embryos; 7 clinics) derived from previously unseen clinic cohorts.

Results: The AI was designed as a deep learning classifier ranking embryos by score according to their likelihood of clinical pregnancy. Higher AI score brackets were associated with increased fetal heartbeat (FH) likelihood across all evaluated datasets, showing a trend of increasing odds ratios (OR). The highest OR was observed in the top G4 bracket (test dataset G4 score ≥ 7.5: OR 3.84; independent dataset G4 score ≥ 7.5: OR 4.01), while the lowest was in the G1 bracket (test dataset G1 score < 4.0: OR 0.40; independent dataset G1 score < 4.0: OR 0.45). AI score brackets G2, G3, and G4 displayed OR values above 1.0 (P < 0.05), indicating linear associations with FH likelihood. Average AI scores were consistently higher for FH-positive than for FH-negative embryos within each age subgroup. Positive correlations were also observed between AI scores and key morphologic parameters used to predict embryo quality.

Conclusions: Strong AI performance across multiple datasets demonstrates the value of our four-step methodology in developing and validating the AI as a reliable adjunct to embryo evaluation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Reproductive Biology and Endocrinology
Reproductive Biology and Endocrinology 医学-内分泌学与代谢
CiteScore
7.90
自引率
2.30%
发文量
161
审稿时长
4-8 weeks
期刊介绍: Reproductive Biology and Endocrinology publishes and disseminates high-quality results from excellent research in the reproductive sciences. The journal publishes on topics covering gametogenesis, fertilization, early embryonic development, embryo-uterus interaction, reproductive development, pregnancy, uterine biology, endocrinology of reproduction, control of reproduction, reproductive immunology, neuroendocrinology, and veterinary and human reproductive medicine, including all vertebrate species.
期刊最新文献
Association between sleep during pregnancy and birth outcomes: a prospective cohort study. Cardiovascular disease risk prediction by Framingham risk score in women with polycystic ovary syndrome. Continuous overnight monitoring of body temperature during embryo transfer cycles as a proxy for establishing progesterone fluctuations by comparison with P4 blood progesterone results: a prospective, observational study. Application of a methodological framework for the development and multicenter validation of reliable artificial intelligence in embryo evaluation. High anti-Müllerian hormone level as a predictor of poor pregnancy outcomes in women with polycystic ovary syndrome undergoing in vitro fertilization/intracytoplasmic sperm injection: a retrospective cohort study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1