Minqiang Wang, Cui Ye, Yiran Yang, Daniel Mukasa, Canran Wang, Changhao Xu, Jihong Min, Samuel A. Solomon, Jiaobing Tu, Guofang Shen, Songsong Tang, Tzung K. Hsiai, Zhaoping Li, Jeannine S. McCune, Wei Gao
{"title":"Printable molecule-selective core–shell nanoparticles for wearable and implantable sensing","authors":"Minqiang Wang, Cui Ye, Yiran Yang, Daniel Mukasa, Canran Wang, Changhao Xu, Jihong Min, Samuel A. Solomon, Jiaobing Tu, Guofang Shen, Songsong Tang, Tzung K. Hsiai, Zhaoping Li, Jeannine S. McCune, Wei Gao","doi":"10.1038/s41563-024-02096-4","DOIUrl":null,"url":null,"abstract":"<p>Wearable and implantable biosensors are pioneering new frontiers in precision medicine by enabling continuous biomolecule analysis for fundamental investigation and personalized health monitoring. However, their widespread adoption remains impeded by challenges such as the limited number of detectable targets, operational instability and production scalability. Here, to address these issues, we introduce printable core–shell nanoparticles with built-in dual functionality: a molecularly imprinted polymer shell for customizable target recognition, and a nickel hexacyanoferrate core for stable electrochemical transduction. Using inkjet printing with an optimized nanoparticle ink formulation, we demonstrate the mass production of robust and flexible biosensors capable of continuously monitoring a broad spectrum of biomarkers, including amino acids, vitamins, metabolites and drugs. We demonstrate their effectiveness in wearable metabolic monitoring of vitamin C, tryptophan and creatinine in individuals with long COVID. Additionally, we validate their utility in therapeutic drug monitoring for cancer patients and in a mouse model through providing real-time analysis of immunosuppressants such as busulfan, cyclophosphamide and mycophenolic acid.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"24 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-024-02096-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wearable and implantable biosensors are pioneering new frontiers in precision medicine by enabling continuous biomolecule analysis for fundamental investigation and personalized health monitoring. However, their widespread adoption remains impeded by challenges such as the limited number of detectable targets, operational instability and production scalability. Here, to address these issues, we introduce printable core–shell nanoparticles with built-in dual functionality: a molecularly imprinted polymer shell for customizable target recognition, and a nickel hexacyanoferrate core for stable electrochemical transduction. Using inkjet printing with an optimized nanoparticle ink formulation, we demonstrate the mass production of robust and flexible biosensors capable of continuously monitoring a broad spectrum of biomarkers, including amino acids, vitamins, metabolites and drugs. We demonstrate their effectiveness in wearable metabolic monitoring of vitamin C, tryptophan and creatinine in individuals with long COVID. Additionally, we validate their utility in therapeutic drug monitoring for cancer patients and in a mouse model through providing real-time analysis of immunosuppressants such as busulfan, cyclophosphamide and mycophenolic acid.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.