Wenghua Tong, XingYan Liu, Ying Yang, Yan Wang, Zhijiu Huang, Hongjun Fan
{"title":"Molecular and technical aspects on the interaction of bovine serum albumin with pyrazine derivatives: From molecular docking to spectroscopy study","authors":"Wenghua Tong, XingYan Liu, Ying Yang, Yan Wang, Zhijiu Huang, Hongjun Fan","doi":"10.1111/1750-3841.70017","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n \n <p>In order to better understand the transport and action mechanism of flavor substance and proteins in human body, the interaction mechanism between pyrazine derivatives and bovine serum albumin (BSA) was studied by molecular dynamics simulation and a series of spectroscopic methods. In molecular docking, it was observed that the small molecules were surrounded by hydrophobic amino acid residues of the protein, and the main amino acid residues formed π–π interaction and hydrogen bond interaction with BSA. The results of fluorescence emission spectroscopy combined with thermodynamic analysis showed that static quenching was the main mechanism of the interaction between three pyrazine derivatives and BSA, which was dominated by hydrophobic interaction. Synchronous fluorescence spectroscopy and three-dimensional fluorescence spectroscopy combined with molecular dynamics simulation proved that the pyrazine derivatives changed the conformation of BSA. In summary, pyrazine derivatives can interact with BSA, and the complexation of the complex changes its spatial conformation. The research in this paper has positive significance for understanding the binding, transport, and metabolism of pyrazine compounds in the process of blood circulation and provides key data for the metabolism of pyrazine compounds in vivo.</p>\n </section>\n \n <section>\n \n <h3> Practical Application</h3>\n \n <div>\n <ul>\n \n <li>The interaction of pyrazine derivatives-BSA is studied by multi-spectra and MD.</li>\n \n <li>The fluorescence quenching of pyrazine derivatives-BSA is static quenching.</li>\n \n <li>The main force between pyrazine derivatives and BSA is hydrophobic force.</li>\n \n <li>There is only one site of association between pyrazine derivatives and BSA.</li>\n \n <li>Pyrazine derivatives have effects on conformation of BSA.</li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.70017","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to better understand the transport and action mechanism of flavor substance and proteins in human body, the interaction mechanism between pyrazine derivatives and bovine serum albumin (BSA) was studied by molecular dynamics simulation and a series of spectroscopic methods. In molecular docking, it was observed that the small molecules were surrounded by hydrophobic amino acid residues of the protein, and the main amino acid residues formed π–π interaction and hydrogen bond interaction with BSA. The results of fluorescence emission spectroscopy combined with thermodynamic analysis showed that static quenching was the main mechanism of the interaction between three pyrazine derivatives and BSA, which was dominated by hydrophobic interaction. Synchronous fluorescence spectroscopy and three-dimensional fluorescence spectroscopy combined with molecular dynamics simulation proved that the pyrazine derivatives changed the conformation of BSA. In summary, pyrazine derivatives can interact with BSA, and the complexation of the complex changes its spatial conformation. The research in this paper has positive significance for understanding the binding, transport, and metabolism of pyrazine compounds in the process of blood circulation and provides key data for the metabolism of pyrazine compounds in vivo.
Practical Application
The interaction of pyrazine derivatives-BSA is studied by multi-spectra and MD.
The fluorescence quenching of pyrazine derivatives-BSA is static quenching.
The main force between pyrazine derivatives and BSA is hydrophobic force.
There is only one site of association between pyrazine derivatives and BSA.
Pyrazine derivatives have effects on conformation of BSA.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.