{"title":"The impact of fruit size on internal browning in pineapples","authors":"Mengzhuo Zhang, Changsong Zhu, Qiting Na, Hui Cao, Cong Tian, Guangsen Liu, Lanhuan Meng","doi":"10.1111/1750-3841.17622","DOIUrl":null,"url":null,"abstract":"<p>A typical symptom of post-harvest pineapple (<i>Ananas comosus</i> L.) internal browning is influenced by multiple factors. However, the precise mechanism through which fruit size influences the occurrence of browning remains unclear. Therefore, this study aimed to investigate the impacts of fruit size in browning and its possible mechanisms in harvested pineapple fruit using physical and biochemical analysis and RNA-seq. Disease incidence was assessed in four groups of fruits (1, 1.5, 2, and 2.5 ± 0.2 kg), with the two most significant groups (1 and 2.5 ± 0.2 kg) selected for detailed analysis. The results showed that the large pineapple fruits had faster browning senescence and membrane lipid peroxidation, higher respiration intensity, more reactive oxygen species accumulation, and higher malondialdehyde content. Likewise, lower antioxidant capacity such as ascorbic acid, ascorbate peroxidase, catalase, and superoxide dismutase and higher polyphenol oxidase activity, peroxidase activity, phenylalanine ammonia-lyase activity, and lipoxygenase activity. It can be concluded that the large pineapple fruits were severely subjected to oxygen stress and membrane lipid peroxidation during storage. Gene ontology enrichment reveals that this relates mainly to oxidoreductase and glutathione metabolism. The large pineapple fruits accelerated AsA–GSH cycle pathway metabolism. Real-time quantitative PCR shows downregulated expression of <i>AcAPX1</i>, <i>AcAPX6</i>, <i>AcAPX6 ×</i> <i>1</i>, <i>AcCAT2</i>, <i>AcSOD[Fe]2</i>, and <i>AcSODX2</i> in large pineapple fruits, whereas <i>AcPPO</i> and <i>AcLOX</i> upregulated expression. This study offers insights into fruit size and browning. Future molecular techniques may reduce fruit browning.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.17622","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A typical symptom of post-harvest pineapple (Ananas comosus L.) internal browning is influenced by multiple factors. However, the precise mechanism through which fruit size influences the occurrence of browning remains unclear. Therefore, this study aimed to investigate the impacts of fruit size in browning and its possible mechanisms in harvested pineapple fruit using physical and biochemical analysis and RNA-seq. Disease incidence was assessed in four groups of fruits (1, 1.5, 2, and 2.5 ± 0.2 kg), with the two most significant groups (1 and 2.5 ± 0.2 kg) selected for detailed analysis. The results showed that the large pineapple fruits had faster browning senescence and membrane lipid peroxidation, higher respiration intensity, more reactive oxygen species accumulation, and higher malondialdehyde content. Likewise, lower antioxidant capacity such as ascorbic acid, ascorbate peroxidase, catalase, and superoxide dismutase and higher polyphenol oxidase activity, peroxidase activity, phenylalanine ammonia-lyase activity, and lipoxygenase activity. It can be concluded that the large pineapple fruits were severely subjected to oxygen stress and membrane lipid peroxidation during storage. Gene ontology enrichment reveals that this relates mainly to oxidoreductase and glutathione metabolism. The large pineapple fruits accelerated AsA–GSH cycle pathway metabolism. Real-time quantitative PCR shows downregulated expression of AcAPX1, AcAPX6, AcAPX6 ×1, AcCAT2, AcSOD[Fe]2, and AcSODX2 in large pineapple fruits, whereas AcPPO and AcLOX upregulated expression. This study offers insights into fruit size and browning. Future molecular techniques may reduce fruit browning.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.