Explainable deep learning identifies patterns and drivers of freshwater harmful algal blooms

IF 14 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Science and Ecotechnology Pub Date : 2025-01-01 DOI:10.1016/j.ese.2024.100522
Shengyue Chen , Jinliang Huang , Jiacong Huang , Peng Wang , Changyang Sun , Zhenyu Zhang , Shijie Jiang
{"title":"Explainable deep learning identifies patterns and drivers of freshwater harmful algal blooms","authors":"Shengyue Chen ,&nbsp;Jinliang Huang ,&nbsp;Jiacong Huang ,&nbsp;Peng Wang ,&nbsp;Changyang Sun ,&nbsp;Zhenyu Zhang ,&nbsp;Shijie Jiang","doi":"10.1016/j.ese.2024.100522","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating magnitude, frequency, and duration of harmful algal blooms (HABs) pose significant challenges to freshwater ecosystems worldwide. However, the mechanisms driving HABs remain poorly understood, in part due to the strong regional specificity of algal processes and the uneven data availability. These complexities make it difficult to generalize HAB dynamics and effectively predict their occurrence using traditional models. To address these challenges, we developed an explainable deep learning approach using long short-term memory (LSTM) models combined with explanation techniques that can capture complex patterns and provide explainable insights into key HAB drivers. We applied this approach for algal density modeling at 102 sites in China's lakes and reservoirs over three years. LSTMs effectively captured daily algal dynamics, achieving mean and maximum Nash-Sutcliffe efficiency coefficients of 0.48 and 0.95 during testing phase. Moreover, water temperature emerged as the primary driver of HABs both nationally and in over 30% of localities, with stronger water temperature sensitivity observed in mid-to low-latitudes. We also identified regional similarities that allow for the successful transferability in modeling algal dynamics. Specifically, using fine-tuned transfer learning, we improved the prediction accuracy in over 75% of poorly gauged areas. Overall, LSTM-based explainable deep learning approach effectively addresses key challenges in HAB modeling by tackling both regional specificity and data limitations. By accurately predicting algal dynamics and identifying critical drivers, this approach provides actionable insights into the mechanisms of HABs, ultimately aids in the implementation of effective mitigation measures for nationwide and regional freshwater ecosystems.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"23 ","pages":"Article 100522"},"PeriodicalIF":14.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786749/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498424001364","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating magnitude, frequency, and duration of harmful algal blooms (HABs) pose significant challenges to freshwater ecosystems worldwide. However, the mechanisms driving HABs remain poorly understood, in part due to the strong regional specificity of algal processes and the uneven data availability. These complexities make it difficult to generalize HAB dynamics and effectively predict their occurrence using traditional models. To address these challenges, we developed an explainable deep learning approach using long short-term memory (LSTM) models combined with explanation techniques that can capture complex patterns and provide explainable insights into key HAB drivers. We applied this approach for algal density modeling at 102 sites in China's lakes and reservoirs over three years. LSTMs effectively captured daily algal dynamics, achieving mean and maximum Nash-Sutcliffe efficiency coefficients of 0.48 and 0.95 during testing phase. Moreover, water temperature emerged as the primary driver of HABs both nationally and in over 30% of localities, with stronger water temperature sensitivity observed in mid-to low-latitudes. We also identified regional similarities that allow for the successful transferability in modeling algal dynamics. Specifically, using fine-tuned transfer learning, we improved the prediction accuracy in over 75% of poorly gauged areas. Overall, LSTM-based explainable deep learning approach effectively addresses key challenges in HAB modeling by tackling both regional specificity and data limitations. By accurately predicting algal dynamics and identifying critical drivers, this approach provides actionable insights into the mechanisms of HABs, ultimately aids in the implementation of effective mitigation measures for nationwide and regional freshwater ecosystems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Electric Vehicles Charging Management System for Optimal Exploitation of Photovoltaic Energy Sources Considering Vehicle-to-Vehicle Mode
IF 3.4 4区 工程技术Frontiers in Energy ResearchPub Date : 2021-11-08 DOI: 10.3389/fenrg.2021.716389
Francesco Lo Franco, Riccardo Mandrioli, M. Ricco, V. Monteiro, L. Monteiro, J. Afonso, G. Grandi
Building energy management and Electric Vehicle charging considering battery degradation and random vehicles’ arrivals and departures
IF 9.4 2区 工程技术Journal of energy storagePub Date : 2023-01-01 DOI: 10.1016/j.est.2023.107141
Van Binh Truong, Long Bao Le
来源期刊
CiteScore
20.40
自引率
6.30%
发文量
11
审稿时长
18 days
期刊介绍: Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.
期刊最新文献
Urbanization leads to asynchronous homogenization of soil microbial communities across biomes Ultra-broadband coherent open-path spectroscopy for multi-gas monitoring in wastewater treatment Global readiness for carbon neutrality: From targets to action A holistic approach to evaluating environmental policy impact using a difference-in-differences model A quantitative assessment framework for water-related policies in large river basins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1