Jin Yang, Yan Xie, Tianyi Wang, You Pu, Ting Ye, Yunman Huang, Baomei Song, Fengqin Cheng, Zheng Yang, Xianqin Zhang
{"title":"Machine learning-based risk prediction of mild cognitive impairment in patients with chronic heart failure: A model development and validation study.","authors":"Jin Yang, Yan Xie, Tianyi Wang, You Pu, Ting Ye, Yunman Huang, Baomei Song, Fengqin Cheng, Zheng Yang, Xianqin Zhang","doi":"10.1016/j.gerinurse.2025.01.022","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate identification of individuals at high risk for mild cognitive impairment (MCI) among chronic heart failure (CHF) patients is crucial for reducing rehospitalization and mortality rates. This study aimed to develop and validate a machine learning model to predict MCI risk in CHF patients. 602 CHF patients were included in this cross-sectional analysis. We constructed four machine learning models and assessed the models using the area under the receiver operating characteristic curve (AUC), calibration curve, and clinical decision curve. Results showed that scores of psychological and social adaptation management, age, free triiodothyronine, Self-rating Depression Scale scores, hemoglobin, sleep duration per night and gender were the best predictors and these factors were used to construct dynamic nomograms. Among all models, eXtreme Gradient Boosting (XGBoost) with an AUC of 0.940 performed the best in predicting the risk of MCI in CHF patients. Dynamic nomogram helps clinicians perform early screening in large populations.</p>","PeriodicalId":56258,"journal":{"name":"Geriatric Nursing","volume":"62 Pt A","pages":"145-156"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geriatric Nursing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.gerinurse.2025.01.022","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate identification of individuals at high risk for mild cognitive impairment (MCI) among chronic heart failure (CHF) patients is crucial for reducing rehospitalization and mortality rates. This study aimed to develop and validate a machine learning model to predict MCI risk in CHF patients. 602 CHF patients were included in this cross-sectional analysis. We constructed four machine learning models and assessed the models using the area under the receiver operating characteristic curve (AUC), calibration curve, and clinical decision curve. Results showed that scores of psychological and social adaptation management, age, free triiodothyronine, Self-rating Depression Scale scores, hemoglobin, sleep duration per night and gender were the best predictors and these factors were used to construct dynamic nomograms. Among all models, eXtreme Gradient Boosting (XGBoost) with an AUC of 0.940 performed the best in predicting the risk of MCI in CHF patients. Dynamic nomogram helps clinicians perform early screening in large populations.
期刊介绍:
Geriatric Nursing is a comprehensive source for clinical information and management advice relating to the care of older adults. The journal''s peer-reviewed articles report the latest developments in the management of acute and chronic disorders and provide practical advice on care of older adults across the long term continuum. Geriatric Nursing addresses current issues related to drugs, advance directives, staff development and management, legal issues, client and caregiver education, infection control, and other topics. The journal is written specifically for nurses and nurse practitioners who work with older adults in any care setting.