Advancing eye disease detection: A comprehensive study on computer-aided diagnosis with vision transformers and SHAP explainability techniques

IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biocybernetics and Biomedical Engineering Pub Date : 2025-01-01 DOI:10.1016/j.bbe.2024.11.005
Hossam Magdy Balaha , Asmaa El-Sayed Hassan , Rawan Ayman Ahmed , Magdy Hassan Balaha
{"title":"Advancing eye disease detection: A comprehensive study on computer-aided diagnosis with vision transformers and SHAP explainability techniques","authors":"Hossam Magdy Balaha ,&nbsp;Asmaa El-Sayed Hassan ,&nbsp;Rawan Ayman Ahmed ,&nbsp;Magdy Hassan Balaha","doi":"10.1016/j.bbe.2024.11.005","DOIUrl":null,"url":null,"abstract":"<div><div>Eye diseases such as age-related macular degeneration (AMD) and diabetic retinopathy are common worldwide and affect millions of people. These conditions can cause severe vision problems and even lead to blindness if not treated promptly. Therefore, accurate and timely diagnosis is crucial to manage these diseases effectively and prevent irreversible vision loss. This study introduces a computer-aided diagnosis (CAD) framework for automatically detecting various eye diseases via advanced methodologies and datasets. The main focus is on classifying fundus images, which is essential for precise diagnosis and prognosis. By incorporating cutting-edge techniques such as Vision Transformers (ViTs), this study aims to improve the performance and interpretability of traditional Convolutional Neural Networks (CNNs). ViTs can capture complex patterns and long-range dependencies in fundus images, helping distinguish between different eye diseases and healthy conditions. Furthermore, the study integrates SHapley additive exPlanations (SHAP) explainability techniques to provide insights into the model’s decision-making process, enhancing trust and understanding of its predictions. The results demonstrate significant performance enhancements compared with the baseline models, with an overall accuracy of 95%. This method outperforms previous state-of-the-art methods by a considerable margin. Additionally, metrics such as precision, recall, intersection over union (IoU), and the Matthews correlation coefficient (MCC) show superior performance across various eye diseases, such as diabetic retinopathy, glaucoma, and age-related macular degeneration. These findings underscore the effectiveness and reliability of the proposed approach in automated eye disease detection, indicating its potential for clinical integration and widespread adoption in healthcare settings.</div></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"45 1","pages":"Pages 23-33"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521624000883","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Eye diseases such as age-related macular degeneration (AMD) and diabetic retinopathy are common worldwide and affect millions of people. These conditions can cause severe vision problems and even lead to blindness if not treated promptly. Therefore, accurate and timely diagnosis is crucial to manage these diseases effectively and prevent irreversible vision loss. This study introduces a computer-aided diagnosis (CAD) framework for automatically detecting various eye diseases via advanced methodologies and datasets. The main focus is on classifying fundus images, which is essential for precise diagnosis and prognosis. By incorporating cutting-edge techniques such as Vision Transformers (ViTs), this study aims to improve the performance and interpretability of traditional Convolutional Neural Networks (CNNs). ViTs can capture complex patterns and long-range dependencies in fundus images, helping distinguish between different eye diseases and healthy conditions. Furthermore, the study integrates SHapley additive exPlanations (SHAP) explainability techniques to provide insights into the model’s decision-making process, enhancing trust and understanding of its predictions. The results demonstrate significant performance enhancements compared with the baseline models, with an overall accuracy of 95%. This method outperforms previous state-of-the-art methods by a considerable margin. Additionally, metrics such as precision, recall, intersection over union (IoU), and the Matthews correlation coefficient (MCC) show superior performance across various eye diseases, such as diabetic retinopathy, glaucoma, and age-related macular degeneration. These findings underscore the effectiveness and reliability of the proposed approach in automated eye disease detection, indicating its potential for clinical integration and widespread adoption in healthcare settings.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.50
自引率
6.20%
发文量
77
审稿时长
38 days
期刊介绍: Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.
期刊最新文献
Observer-based linear state-dependent control for blood glucose regulation in type 1 diabetic patients with unknown delays A feedback loop study of brain-heart interaction based on HEP and HRV A multidomain 0D model for continuous positive airway pressure ventilation circuit design: Validation and applications Electroencephalograph (EEG) based classification of mental arithmetic using explainable machine learning Contact Pressure, sliding distance and wear rate analysis at trunnion of hip implant for daily Activities: A finite element approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1