{"title":"The multi-criteria ranking method for criterion-oriented regret three-way decision","authors":"Weidong Wan , Kai Zhang , Ligang Zhou","doi":"10.1016/j.ijar.2025.109374","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, the criterion-oriented three-way decision has garnered widespread attention as it considers the decision-makers' preferences in handling multi-criteria decision-making problems. However, due to the fact that some criterion-oriented three-way decision models do not accurately consider the specific deviation between the object evaluation value and the criterion preference value when calculating the loss function, some of the objects show the weakness of ranking failure. In order to eliminate this weakness, this paper considers this deviation as the decision-maker's regret psychology, combines the regret theory, proposes a new loss function and constructs a new criterion-oriented regret three-way decision model. Firstly, an innovative approach for determining the loss function is introduced, integrating the decision-maker's basic demands with regret theory. Secondly, thresholds are derived by combining the decision-maker's basic demands with two optimization models. Thirdly, the <em>k</em>-means++ clustering algorithm is employed to derive the objects' fuzzy depictions. Then, this paper proposes a practical method for calculating conditional probabilities by combining the concept of closeness with the fuzzy depictions of the objects. Next, a multi-criteria ranking method founded on criterion-oriented regret three-way decision is proposed. Finally, the applicability of the innovative sequencing method is verified by combining parametric and comparative analyses for the computer hardware selection problem. Additionally, in dataset experiments, the proposed method is further validated on datasets containing known ranking results and datasets containing ordered classification.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"179 ","pages":"Article 109374"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25000155","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, the criterion-oriented three-way decision has garnered widespread attention as it considers the decision-makers' preferences in handling multi-criteria decision-making problems. However, due to the fact that some criterion-oriented three-way decision models do not accurately consider the specific deviation between the object evaluation value and the criterion preference value when calculating the loss function, some of the objects show the weakness of ranking failure. In order to eliminate this weakness, this paper considers this deviation as the decision-maker's regret psychology, combines the regret theory, proposes a new loss function and constructs a new criterion-oriented regret three-way decision model. Firstly, an innovative approach for determining the loss function is introduced, integrating the decision-maker's basic demands with regret theory. Secondly, thresholds are derived by combining the decision-maker's basic demands with two optimization models. Thirdly, the k-means++ clustering algorithm is employed to derive the objects' fuzzy depictions. Then, this paper proposes a practical method for calculating conditional probabilities by combining the concept of closeness with the fuzzy depictions of the objects. Next, a multi-criteria ranking method founded on criterion-oriented regret three-way decision is proposed. Finally, the applicability of the innovative sequencing method is verified by combining parametric and comparative analyses for the computer hardware selection problem. Additionally, in dataset experiments, the proposed method is further validated on datasets containing known ranking results and datasets containing ordered classification.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.