Zhen Li , Shiqing Zhong , Bin Liu , Lizhi Li , Haibo Zhang , Weikun Guan , Dongsheng Guo
{"title":"LC-MS profiling reveals metabolic dynamics in Apis mellifera worker bee larvae–pupae transition","authors":"Zhen Li , Shiqing Zhong , Bin Liu , Lizhi Li , Haibo Zhang , Weikun Guan , Dongsheng Guo","doi":"10.1016/j.aspen.2025.102376","DOIUrl":null,"url":null,"abstract":"<div><div>Metabolites present in the hemolymph of honey bees play a crucial role in modulating the metamorphic process within the species. However, the precise alterations in metabolite composition, along with the associated variances and regulatory pathways implicated during the larvae-to-pupae metamorphosis of honey bees, remain incompletely elucidated. In this investigation, we gathered hemolymph samples from honey bee larvae of <em>Apis mellifera</em> at three distinct physiological stages-feeding, prepupae, and pupae and subjected them to metabolite analysis utilizing the liquid chromatography-mass spectrometry (LC-MS) technique. Employing principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), we identified significant differential metabolites and conducted a metabolic pathway analysis on those differentially up-regulated during the prepupae and pupae stages. Notably, metabolites up-regulated in the hemolymph of prepupae stage larvae primarily governed glucose metabolism and fat digestion and absorption, while those in pupae stage were involved in regulating chitin and lipopolysaccharide precursor formation, as well as the biosynthesis of phenylalanine, tyrosine, and tryptophan. These findings bear significant implications for advancing our comprehension of the metamorphic processes in honey bees.</div></div>","PeriodicalId":15094,"journal":{"name":"Journal of Asia-pacific Entomology","volume":"28 1","pages":"Article 102376"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asia-pacific Entomology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S122686152500007X","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolites present in the hemolymph of honey bees play a crucial role in modulating the metamorphic process within the species. However, the precise alterations in metabolite composition, along with the associated variances and regulatory pathways implicated during the larvae-to-pupae metamorphosis of honey bees, remain incompletely elucidated. In this investigation, we gathered hemolymph samples from honey bee larvae of Apis mellifera at three distinct physiological stages-feeding, prepupae, and pupae and subjected them to metabolite analysis utilizing the liquid chromatography-mass spectrometry (LC-MS) technique. Employing principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), we identified significant differential metabolites and conducted a metabolic pathway analysis on those differentially up-regulated during the prepupae and pupae stages. Notably, metabolites up-regulated in the hemolymph of prepupae stage larvae primarily governed glucose metabolism and fat digestion and absorption, while those in pupae stage were involved in regulating chitin and lipopolysaccharide precursor formation, as well as the biosynthesis of phenylalanine, tyrosine, and tryptophan. These findings bear significant implications for advancing our comprehension of the metamorphic processes in honey bees.
期刊介绍:
The journal publishes original research papers, review articles and short communications in the basic and applied area concerning insects, mites or other arthropods and nematodes of economic importance in agriculture, forestry, industry, human and animal health, and natural resource and environment management, and is the official journal of the Korean Society of Applied Entomology and the Taiwan Entomological Society.