Comparison of Kolmogorov–Arnold Networks and Multi-Layer Perceptron for modelling and optimisation analysis of energy systems

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Energy and AI Pub Date : 2025-01-16 DOI:10.1016/j.egyai.2025.100473
Talha Ansar , Waqar Muhammad Ashraf
{"title":"Comparison of Kolmogorov–Arnold Networks and Multi-Layer Perceptron for modelling and optimisation analysis of energy systems","authors":"Talha Ansar ,&nbsp;Waqar Muhammad Ashraf","doi":"10.1016/j.egyai.2025.100473","DOIUrl":null,"url":null,"abstract":"<div><div>Considering the improved interpretable performance of Kolmogorov–Arnold Networks (KAN) algorithm compared to multi-layer perceptron (MLP) algorithm, a fundamental research question arises on how modifying the loss function of KAN affects its modelling performance for energy systems, particularly industrial-scale thermal power plants. In this regard, first, we modify the loss function of both KAN and MLP algorithms and embed Pearson Correlation Coefficient (PCC). Second, the algorithmic configurations built on PCC, i.e., KAN_PCC and MLP_PCC as well as original architecture of KAN and MLP are deployed for modelling and optimisation analyses for two case studies of energy systems: (i) energy efficiency cooling and energy efficiency heating of buildings, and (ii) power generation operation of 660 MW capacity thermal power plant. The analysis reveals superior modelling performance of KAN and KAN_PCC algorithms than those of MLP and MLP_PCC for the two case studies. KAN models are embedded in the optimisation framework of nonlinear programming and feasible optimal solutions are estimated, maximising thermal efficiency up to 42.17 ± 0.88 % and minimising turbine heat rate to 7487 ± 129 kJ/kWh corresponding to power generation of 500 ± 14 MW for the thermal power plant. It is anticipated that the scientific, research and industrial community may benefit from the fundamental insights presented in this paper for the ML algorithm selection and carrying out model-based optimisation analysis for the performance enhancement of energy systems.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"20 ","pages":"Article 100473"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Considering the improved interpretable performance of Kolmogorov–Arnold Networks (KAN) algorithm compared to multi-layer perceptron (MLP) algorithm, a fundamental research question arises on how modifying the loss function of KAN affects its modelling performance for energy systems, particularly industrial-scale thermal power plants. In this regard, first, we modify the loss function of both KAN and MLP algorithms and embed Pearson Correlation Coefficient (PCC). Second, the algorithmic configurations built on PCC, i.e., KAN_PCC and MLP_PCC as well as original architecture of KAN and MLP are deployed for modelling and optimisation analyses for two case studies of energy systems: (i) energy efficiency cooling and energy efficiency heating of buildings, and (ii) power generation operation of 660 MW capacity thermal power plant. The analysis reveals superior modelling performance of KAN and KAN_PCC algorithms than those of MLP and MLP_PCC for the two case studies. KAN models are embedded in the optimisation framework of nonlinear programming and feasible optimal solutions are estimated, maximising thermal efficiency up to 42.17 ± 0.88 % and minimising turbine heat rate to 7487 ± 129 kJ/kWh corresponding to power generation of 500 ± 14 MW for the thermal power plant. It is anticipated that the scientific, research and industrial community may benefit from the fundamental insights presented in this paper for the ML algorithm selection and carrying out model-based optimisation analysis for the performance enhancement of energy systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
期刊最新文献
Data-driven modeling of open circuit voltage hysteresis for LiFePO4 batteries with conditional generative adversarial network Optimising quantile-based trading strategies in electricity arbitrage Physics-Informed Neural Network for modeling and predicting temperature fluctuations in proton exchange membrane electrolysis Methodology for predicting material performance by context-based modeling: A case study on solid amine CO2 adsorbents Comparison of Kolmogorov–Arnold Networks and Multi-Layer Perceptron for modelling and optimisation analysis of energy systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1