Sara Beltrami , Lorenzo Di Paco , Claudia Pisuttu , Lorenzo Mariotti , Alessandra Marchica , Elisa Pellegrini , Sabrina Sarrocco , Cristina Nali , Pierdomenico Perata , Claudia Kiferle
{"title":"The role of iodine in plant defence against Botrytis cinerea","authors":"Sara Beltrami , Lorenzo Di Paco , Claudia Pisuttu , Lorenzo Mariotti , Alessandra Marchica , Elisa Pellegrini , Sabrina Sarrocco , Cristina Nali , Pierdomenico Perata , Claudia Kiferle","doi":"10.1016/j.stress.2024.100723","DOIUrl":null,"url":null,"abstract":"<div><div>Iodine has been recently defined as a plant nutrient, triggering beneficial outcomes in terms of plant fitness and crop quality. In the present study, we demonstrated that iodine boosts Arabidopsis tolerance against the necrotrophic fungal pathogen <em>Botrytis cinerea.</em> At micromolar concentrations, we found that iodine activated a broad spectrum of immune-like responses, stimulating the transient accumulation of H<sub>2</sub>O<sub>2</sub>, likely acting as a second messenger. Iodine activated three major hormonal players involved in plant defence, namely, salicylic acid, jasmonic acid and ethylene. Several pathogenesis-related (PR) genes, particularly <em>PR2</em> and <em>PR5</em>, were also strongly induced by iodine. The use of Arabidopsis mutants impaired in SA, JA or ET biosynthesis/signalling allowed us to demonstrate the central role of JA in the iodine-induced resistance to <em>B. cinerea.</em> Nevertheless, the wide range of defence-like responses triggered by iodine suggests its potential effectiveness against a broad spectrum of biotic agents. Integrating iodine in plant nutritional programs thus represents a promising, eco-friendly, and easy-to-apply tool to fight against pathogen attacks, which could be alternative/additional to using traditional pesticides.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"15 ","pages":"Article 100723"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24003762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Iodine has been recently defined as a plant nutrient, triggering beneficial outcomes in terms of plant fitness and crop quality. In the present study, we demonstrated that iodine boosts Arabidopsis tolerance against the necrotrophic fungal pathogen Botrytis cinerea. At micromolar concentrations, we found that iodine activated a broad spectrum of immune-like responses, stimulating the transient accumulation of H2O2, likely acting as a second messenger. Iodine activated three major hormonal players involved in plant defence, namely, salicylic acid, jasmonic acid and ethylene. Several pathogenesis-related (PR) genes, particularly PR2 and PR5, were also strongly induced by iodine. The use of Arabidopsis mutants impaired in SA, JA or ET biosynthesis/signalling allowed us to demonstrate the central role of JA in the iodine-induced resistance to B. cinerea. Nevertheless, the wide range of defence-like responses triggered by iodine suggests its potential effectiveness against a broad spectrum of biotic agents. Integrating iodine in plant nutritional programs thus represents a promising, eco-friendly, and easy-to-apply tool to fight against pathogen attacks, which could be alternative/additional to using traditional pesticides.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.