The Arabidopsis Class I formin AtFH5 contributes to seedling resistance to salt stress

IF 6.8 Q1 PLANT SCIENCES Plant Stress Pub Date : 2025-02-10 DOI:10.1016/j.stress.2025.100770
Eva Kollárová , Anežka Baquero Forero , Ali Burak Yildiz , Helena Kočová , Viktor Žárský , Fatima Cvrčková
{"title":"The Arabidopsis Class I formin AtFH5 contributes to seedling resistance to salt stress","authors":"Eva Kollárová ,&nbsp;Anežka Baquero Forero ,&nbsp;Ali Burak Yildiz ,&nbsp;Helena Kočová ,&nbsp;Viktor Žárský ,&nbsp;Fatima Cvrčková","doi":"10.1016/j.stress.2025.100770","DOIUrl":null,"url":null,"abstract":"<div><div>The family of formins, evolutionarily conserved multidomain proteins engaged in the control of actin and microtubule cytoskeleton organization, exhibits considerable diversity in plants. Angiosperms have two formin clades consisting of multiple paralogs, Class I and Class II, the former being often transmembrane proteins located at the plasmalemma or endomembranes. According to available transcriptome data, the <em>Arabidopsis thaliana</em> Class I transmembrane formin AtFH5 (At5g54650) exhibits a distinct pattern of transcript abundance in various seedling root tissues with massive increase of transcript level upon salinity stress. To examine a possible role of AtFH5 in NaCl stress response, we generated transgenic plants expressing green fluorescent protein (GFP)-tagged AtFH5 under its native promoter and characterized its tissue and intracellular localization under standard culture conditions and under NaCl stress. While we confirmed the induction of AtFH5 expression by salt treatment, the distribution of tagged protein, with maxima in the border-like cells of the root cap, in the phloem and at lateral root emergence sites, did not reflect previously reported transcript abundance, suggesting posttranscriptional regulation of gene expression. Subcellular localization studies employing also membrane trafficking inhibitors suggested that AtFH5 protein level may be modulated by endocytosis and autophagy. Notably, loss-of-function <em>atfh5</em> mutants exhibited increased sensitivity to NaCl stress, indicating that AtFH5 contributes to the development of seedling salt tolerance. These findings highlight the functional importance of AtFH5 in abiotic stress responses.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"15 ","pages":"Article 100770"},"PeriodicalIF":6.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X25000351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The family of formins, evolutionarily conserved multidomain proteins engaged in the control of actin and microtubule cytoskeleton organization, exhibits considerable diversity in plants. Angiosperms have two formin clades consisting of multiple paralogs, Class I and Class II, the former being often transmembrane proteins located at the plasmalemma or endomembranes. According to available transcriptome data, the Arabidopsis thaliana Class I transmembrane formin AtFH5 (At5g54650) exhibits a distinct pattern of transcript abundance in various seedling root tissues with massive increase of transcript level upon salinity stress. To examine a possible role of AtFH5 in NaCl stress response, we generated transgenic plants expressing green fluorescent protein (GFP)-tagged AtFH5 under its native promoter and characterized its tissue and intracellular localization under standard culture conditions and under NaCl stress. While we confirmed the induction of AtFH5 expression by salt treatment, the distribution of tagged protein, with maxima in the border-like cells of the root cap, in the phloem and at lateral root emergence sites, did not reflect previously reported transcript abundance, suggesting posttranscriptional regulation of gene expression. Subcellular localization studies employing also membrane trafficking inhibitors suggested that AtFH5 protein level may be modulated by endocytosis and autophagy. Notably, loss-of-function atfh5 mutants exhibited increased sensitivity to NaCl stress, indicating that AtFH5 contributes to the development of seedling salt tolerance. These findings highlight the functional importance of AtFH5 in abiotic stress responses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Stress
Plant Stress PLANT SCIENCES-
CiteScore
5.20
自引率
8.00%
发文量
76
审稿时长
63 days
期刊介绍: The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues. Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and: Lack of water (drought) and excess (flooding), Salinity stress, Elevated temperature and/or low temperature (chilling and freezing), Hypoxia and/or anoxia, Mineral nutrient excess and/or deficiency, Heavy metals and/or metalloids, Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection, Viral, phytoplasma, bacterial and fungal plant-pathogen interactions. The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.
期刊最新文献
Integrated metabolome and transcriptome analysis of fulvic acid relieves nitrate stress-induced damage in spinach (Spinacia oleracea L.) by regulating multiple defense pathways Metabolic reprogramming of tomato plants under Ralstonia solanacearum infection Pinellia ternata HD-Zip6 gene positively regulates heat stress tolerance in transgenic Arabidopsis by increasing ROS scavenging and NAC019 expression Can biostimulants enhance plant resilience to heat and water stress in the Mediterranean hotspot? Volatile organic compounds as potential markers of Botrytis cinerea infection in intact harvested grape berries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1