{"title":"A physics-informed risk force theory for estimating pedestrian crash risk by severity using artificial intelligence-based video analytics","authors":"Saransh Sahu , Yasir Ali , Sebastien Glaser , Md Mazharul Haque","doi":"10.1016/j.amar.2025.100382","DOIUrl":null,"url":null,"abstract":"<div><div>Pedestrians are a vulnerable road user group, and assessing their crash risk at critical locations, such as signalized intersections, is crucial for developing targeted countermeasures. While conflict-based safety assessments using traffic conflict measures effectively estimate crash risk, they often overlook the heterogeneity of different motorized and non-motorized road users. Conversely, field-based theories account for road user heterogeneity, yet their application in crash risk assessment, specifically evaluating pedestrian crash risk, and particularly by severity level using real-world data, remains underexplored. This study introduces a novel application of physics-informed risk force theory for assessing pedestrian crash risk by injury severity, utilizing facility-based video data at signalized intersections. The study derives risk forces that encompass pedestrian and vehicle heterogeneity as a nearness-to-collision component and vehicle impact speed as a severity component. Stationary and non-stationary extreme value models, incorporating exogenous traffic parameters at the signal cycle level, were applied to 72 h of video data collected from three signalized intersections in Queensland, Australia. The non-stationary univariate extreme value model with risk force as a measure of nearness-to-collision reliably estimated total crash frequency compared to historical crash records. In addition, the bivariate extreme value model with risk force and impact speed reasonably predicted pedestrian crashes by severity levels. The results also indicate that an increased volume of interacting pedestrians and left-turning vehicles elevates the likelihood of total and severe crashes. The proposed pedestrian crash risk assessment framework offers a unified and efficient proactive approach that can enhance automated safety analysis of traffic facilities, thereby assisting road authorities in real-time safety management.</div></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"46 ","pages":"Article 100382"},"PeriodicalIF":12.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665725000132","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Pedestrians are a vulnerable road user group, and assessing their crash risk at critical locations, such as signalized intersections, is crucial for developing targeted countermeasures. While conflict-based safety assessments using traffic conflict measures effectively estimate crash risk, they often overlook the heterogeneity of different motorized and non-motorized road users. Conversely, field-based theories account for road user heterogeneity, yet their application in crash risk assessment, specifically evaluating pedestrian crash risk, and particularly by severity level using real-world data, remains underexplored. This study introduces a novel application of physics-informed risk force theory for assessing pedestrian crash risk by injury severity, utilizing facility-based video data at signalized intersections. The study derives risk forces that encompass pedestrian and vehicle heterogeneity as a nearness-to-collision component and vehicle impact speed as a severity component. Stationary and non-stationary extreme value models, incorporating exogenous traffic parameters at the signal cycle level, were applied to 72 h of video data collected from three signalized intersections in Queensland, Australia. The non-stationary univariate extreme value model with risk force as a measure of nearness-to-collision reliably estimated total crash frequency compared to historical crash records. In addition, the bivariate extreme value model with risk force and impact speed reasonably predicted pedestrian crashes by severity levels. The results also indicate that an increased volume of interacting pedestrians and left-turning vehicles elevates the likelihood of total and severe crashes. The proposed pedestrian crash risk assessment framework offers a unified and efficient proactive approach that can enhance automated safety analysis of traffic facilities, thereby assisting road authorities in real-time safety management.
期刊介绍:
Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.