Berend Denkena , Gerhard Poll , Benjamin Bergmann , Florian Pape , Belal Nassef , Jan Schenzel
{"title":"Influence of cooling lubricants on mechanical load at the cutting wedge using high-speed microcinematography and an open-contra rotation tribometer","authors":"Berend Denkena , Gerhard Poll , Benjamin Bergmann , Florian Pape , Belal Nassef , Jan Schenzel","doi":"10.1016/j.cirpj.2025.01.010","DOIUrl":null,"url":null,"abstract":"<div><div>The use of cooling lubricant (CL) in machining influences the thermo-mechanical load of the tool and can increase both the workpiece quality and the metal removal rate. However, a targeted design of the CL supply strategy is not possible due to a lack of basic knowledge on the mechanisms of cooling lubricants. Therefore, the mechanical load on the cutting wedge is investigated in dependence of the CL-supply pressure for a cutting oil and an emulsion. It can be seen that the maximum normal stress increases with increasing CL-pressure due to a reduction in contact length. The maximum tangential stress shows a minimum for p = 45 bar and therefore a reduction in mechanical tool load when using cooling lubricants. The friction in the secondary shear zone is analysed using local coefficients of friction and an open contra-rotation tribometer. A critical contact length CL<sub>RF,crit</sub> has been determined where a significant reduction in friction as a result of the lubrication of the chip-tool contact occurs for an increasing contact at the rake face. In order to investigate the contact conditions in the presence of CL fundamental tribometer investigations were conducted. Based on this it is shown that there is no penetration to the cutting edge near the primary shear zone using CL-supply from the rake face.</div></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"58 ","pages":"Pages 40-46"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581725000161","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The use of cooling lubricant (CL) in machining influences the thermo-mechanical load of the tool and can increase both the workpiece quality and the metal removal rate. However, a targeted design of the CL supply strategy is not possible due to a lack of basic knowledge on the mechanisms of cooling lubricants. Therefore, the mechanical load on the cutting wedge is investigated in dependence of the CL-supply pressure for a cutting oil and an emulsion. It can be seen that the maximum normal stress increases with increasing CL-pressure due to a reduction in contact length. The maximum tangential stress shows a minimum for p = 45 bar and therefore a reduction in mechanical tool load when using cooling lubricants. The friction in the secondary shear zone is analysed using local coefficients of friction and an open contra-rotation tribometer. A critical contact length CLRF,crit has been determined where a significant reduction in friction as a result of the lubrication of the chip-tool contact occurs for an increasing contact at the rake face. In order to investigate the contact conditions in the presence of CL fundamental tribometer investigations were conducted. Based on this it is shown that there is no penetration to the cutting edge near the primary shear zone using CL-supply from the rake face.
期刊介绍:
The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.